AIMC Topic: Organ Size

Clear Filters Showing 41 to 50 of 78 articles

Prediction of vaginal birth after cesarean deliveries using machine learning.

American journal of obstetrics and gynecology
BACKGROUND: Efforts to reduce cesarean delivery rates to 12-15% have been undertaken worldwide. Special focus has been directed towards parturients who undergo a trial of labor after cesarean delivery to reduce the burden of repeated cesarean deliver...

Data augmentation using generative adversarial networks (CycleGAN) to improve generalizability in CT segmentation tasks.

Scientific reports
Labeled medical imaging data is scarce and expensive to generate. To achieve generalizable deep learning models large amounts of data are needed. Standard data augmentation is a method to increase generalizability and is routinely performed. Generati...

Identifying schizophrenia subgroups using clustering and supervised learning.

Schizophrenia research
Schizophrenia has a 1% incidence rate world-wide and those diagnosed present with positive (e.g. hallucinations, delusions), negative (e.g. apathy, asociality), and cognitive symptoms. However, both symptom burden and associated brain alterations are...

Fully automated intracranial ventricle segmentation on CT with 2D regional convolutional neural network to estimate ventricular volume.

International journal of computer assisted radiology and surgery
PURPOSE: Hydrocephalus is a clinically significant condition which can have devastating consequences if left untreated. Currently available methods for quantifying this condition using CT imaging are unreliable and prone to error. The purpose of this...

Computer-assisted prediction of atherosclerotic intimal thickness based on weight of adrenal gland, interleukin-6 concentration, and neural networks.

The Journal of international medical research
OBJECTIVE: Atherosclerosis (AS) is the main pathological basis of ischemic cardio-cerebrovascular diseases, and the intimal thickness (IT) of large arteries is regarded as a powerful evaluation indicator for AS. We established an effective neural net...

Electroconvulsive Therapy Induces Cortical Morphological Alterations in Major Depressive Disorder Revealed with Surface-Based Morphometry Analysis.

International journal of neural systems
Although electroconvulsive therapy (ECT) is one of the most effective treatments for major depressive disorder (MDD), the mechanism underlying the therapeutic efficacy and side effects of ECT remains poorly understood. Here, we investigated alteratio...

Automated, machine learning-based, 3D echocardiographic quantification of left ventricular mass.

Echocardiography (Mount Kisco, N.Y.)
BACKGROUND: Although 3D echocardiography (3DE) circumvents many limitations of 2D echocardiography by allowing direct measurements of left ventricular (LV) mass, it is seldom used in clinical practice due to time-consuming analysis. A recently develo...

Fully automated, real-time 3D ultrasound segmentation to estimate first trimester placental volume using deep learning.

JCI insight
We present a new technique to fully automate the segmentation of an organ from 3D ultrasound (3D-US) volumes, using the placenta as the target organ. Image analysis tools to estimate organ volume do exist but are too time consuming and operator depen...