AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Organs at Risk

Showing 31 to 40 of 294 articles

Clear Filters

Assessment of clinical feasibility:offline adaptive radiotherapy for lung cancer utilizing kV iCBCT and UNet++ based deep learning model.

Journal of applied clinical medical physics
BACKGROUND: Lung cancer poses a significant global health challenge. Adaptive radiotherapy (ART) addresses uncertainties due to lung tumor dynamics. We aimed to investigate a comprehensively and systematically validated offline ART regimen with high ...

Evaluation and comparison of synthetic computed tomography algorithms with 3T MRI for prostate radiotherapy: AI-based versus bulk density method.

Journal of applied clinical medical physics
PURPOSE: Synthetic computed tomography (sCT)-algorithms, which generate computed tomography images from magnetic resonance imaging data, are becoming part of the clinical radiotherapy workflow. The aim of this retrospective study was to evaluate and ...

Dose prediction of CyberKnife Monte Carlo plan for lung cancer patients based on deep learning: robust learning of variable beam configurations.

Radiation oncology (London, England)
BACKGROUND: Accurate calculation of lung cancer dose using the Monte Carlo (MC) algorithm in CyberKnife (CK) is essential for precise planning. We aim to employ deep learning to directly predict the 3D dose distribution calculated by the MC algorithm...

Artificial intelligence contouring in radiotherapy for organs-at-risk and lymph node areas.

Radiation oncology (London, England)
INTRODUCTION: The delineation of organs-at-risk and lymph node areas is a crucial step in radiotherapy, but it is time-consuming and associated with substantial user-dependent variability in contouring. Artificial intelligence (AI) appears to be the ...

Attention 3D UNET for dose distribution prediction of high-dose-rate brachytherapy of cervical cancer: Intracavitary applicators.

Journal of applied clinical medical physics
BACKGROUND: Formulating a clinically acceptable plan within the time-constrained clinical setting of brachytherapy poses challenges to clinicians. Deep learning based dose prediction methods have shown favorable solutions for enhancing efficiency, bu...

Breast radiotherapy planning: A decision-making framework using deep learning.

Medical physics
BACKGROUND: Effective breast cancer treatment planning requires balancing tumor control while minimizing radiation exposure to healthy tissues. Choosing between intensity-modulated radiation therapy (IMRT) and three-dimensional conformal radiation th...

Quality and mechanical efficiency of automated knowledge-based planning for volumetric-modulated arc therapy in head and neck cancer.

Journal of applied clinical medical physics
OBJECTIVES: This study aimed to examine the effectiveness of the automated RapidPlan in assessing plan quality and to explore how beam complexity affects the mechanical performance of volumetric modulated arc therapy for head and neck cancers.

Automated treatment planning with deep reinforcement learning for head-and-neck (HN) cancer intensity modulated radiation therapy (IMRT).

Physics in medicine and biology
To develop a deep reinforcement learning (DRL) agent to self-interact with the treatment planning system to automatically generate intensity modulated radiation therapy (IMRT) treatment plans for head-and-neck (HN) cancer with consistent organ-at-ris...