AIMC Topic: Organs at Risk

Clear Filters Showing 31 to 40 of 315 articles

Evaluation of AI-based auto-contouring tools in radiotherapy: A single-institution study.

Journal of applied clinical medical physics
BACKGROUND: Accurate delineation of organs at risk (OARs) is crucial yet time-consuming in the radiotherapy treatment planning workflow. Modern artificial intelligence (AI) technologies had made automation of OAR contouring feasible. This report deta...

Under-representation for Female Pelvis Cancers in Commercial Auto-segmentation Solutions and Open-source Imaging Datasets.

Clinical oncology (Royal College of Radiologists (Great Britain))
AIM: Artificial intelligence (AI) based auto-segmentation aids radiation therapy (RT) workflows and is being adopted in clinical environments facilitated by the increased availability of commercial solutions for organs at risk (OARs). In addition, op...

Automatic segmentation of MRI images for brain radiotherapy planning using deep ensemble learning.

Biomedical physics & engineering express
This study aimed to develop and evaluate an efficient method to automatically segment T1- and T2-weighted brain magnetic resonance imaging (MRI) images. We specifically compared the segmentation performance of individual convolutional neural network ...

A qualitative, quantitative and dosimetric evaluation of a machine learning-based automatic segmentation method in treatment planning for gastric cancer.

Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB)
PURPOSE: To investigate the performance of a machine learning-based segmentation method for treatment planning of gastric cancer.

Generalizability, robustness, and correction bias of segmentations of thoracic organs at risk in CT images.

European radiology
OBJECTIVE: This study aims to assess and compare two state-of-the-art deep learning approaches for segmenting four thoracic organs at riskĀ (OAR)-the esophagus, trachea, heart, and aorta-in CT images in the context of radiotherapy planning.

Automated treatment planning with deep reinforcement learning for head-and-neck (HN) cancer intensity modulated radiation therapy (IMRT).

Physics in medicine and biology
To develop a deep reinforcement learning (DRL) agent to self-interact with the treatment planning system to automatically generate intensity modulated radiation therapy (IMRT) treatment plans for head-and-neck (HN) cancer with consistent organ-at-ris...

Machine learning based radiomics model to predict radiotherapy induced cardiotoxicity in breast cancer.

Journal of applied clinical medical physics
PURPOSE: Cardiotoxicity is one of the major concerns in breast cancer treatment, significantly affecting patient outcomes. To improve the likelihood of favorable outcomes for breast cancer survivors, it is essential to carefully balance the potential...

Artificial Intelligence-Empowered Multistep Integrated Radiation Therapy Workflow for Nasopharyngeal Carcinoma.

International journal of radiation oncology, biology, physics
PURPOSE: To establish an artificial intelligence (AI)-empowered multistep integrated (MSI) radiation therapy (RT) workflow for patients with nasopharyngeal carcinoma (NPC) and evaluate its feasibility and clinical performance.

Automatic plan selection using deep network-A prostate study.

Medical physics
BACKGROUND: Recently, high-dose-rate (HDR) brachytherapy treatment plans generation was improved with the development of multicriteria optimization (MCO) algorithms that can generate thousands of pareto optimal plans within seconds. This brings a shi...