RATIONALE AND OBJECTIVES: Misregistration artifacts between the PET and attenuation correction CT (CTAC) exams can degrade image quality and cause diagnostic errors. Deep learning (DL)-warped elastic registration methods have been proposed to improve...
The purpose of this paper is to provide an overview of the cutting-edge applications of artificial intelligence (AI) technology in total-body positron emission tomography/computed tomography (PET/CT) scanning technology and its profound impact on the...
INTRODUCTION: Primary refractory disease affects 30-40% of patients diagnosed with DLBCL and is a significant challenge in disease management due to its poor prognosis. Predicting refractory status could greatly inform treatment strategies, enabling ...
INTRODUCTION: Lutetium-177 (Lu-177) prostate-specific membrane antigen (PSMA) therapy is a radionuclide treatment that prolongs overall survival in metastatic castration-resistant prostate cancer (MCRPC). We aimed to predict lesion-based treatment re...
PURPOSE: This study aimed to investigate a deep learning model to classify amyloid plaque deposition in the brain PET images of patients suspected of Alzheimer's disease.
The standard method for identifying active Brown Adipose Tissue (BAT) is [F]-Fluorodeoxyglucose ([F]-FDG) PET/CT imaging, which is costly and exposes patients to radiation, making it impractical for population studies. These issues can be addressed w...
Clinical & translational oncology : official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico
Sep 20, 2024
PURPOSE: The objective of this study is to assess the prognostic efficacy of F-fluorodeoxyglucose (F-FDG) positron emission tomography/computed tomography (PET-CT) parameters in nasopharyngeal carcinoma (NPC) and identify the best machine learning (M...
. Approximately 57% of non-small cell lung cancer (NSCLC) patients face a 20% risk of brain metastases (BMs). The delivery of drugs to the central nervous system is challenging because of the blood-brain barrier, leading to a relatively poor prognosi...
OBJECTIVES: To develop and identify machine learning (ML) models using pretreatment 2-deoxy-2-[F]fluoro-D-glucose ([F]-FDG)-positron emission tomography (PET)-based radiomic features to differentiate benign from malignant parotid gland diseases (PGDs...
RATIONALE AND OBJECTIVE: To compare the performance of large language model (LLM) based Gemini and Generative Pre-trained Transformers (GPTs) in data mining and generating structured reports based on free-text PET/CT reports for breast cancer after u...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.