AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Prognosis

Showing 181 to 190 of 3140 articles

Clear Filters

Leveraging Deep Learning in Real-Time Intelligent Bladder Tumor Detection During Cystoscopy: A Diagnostic Study.

Annals of surgical oncology
BACKGROUND: Accurate detection of bladder lesions during cystoscopy is crucial for early tumor diagnosis and recurrence monitoring. However, conventional visual inspection methods have low and inconsistent detection rates. This study aimed to evaluat...

Preoperative Maximum Standardized Uptake Value Emphasized in Explainable Machine Learning Model for Predicting the Risk of Recurrence in Resected Non-Small Cell Lung Cancer.

JCO clinical cancer informatics
PURPOSE: To comprehensively analyze the association between preoperative maximum standardized uptake value (SUV) on 18F-fluorodeoxyglucose positron emission tomography-computed tomography and postoperative recurrence in resected non-small cell lung c...

Identification of novel diagnostic and prognostic microRNAs in sarcoma on TCGA dataset: bioinformatics and machine learning approach.

Scientific reports
The discovery of unique microRNA (miR) patterns and their corresponding genes in sarcoma patients indicates their involvement in cancer development and suggests their potential use in medical management. MiRs were identified from The Cancer Genome At...

Integrating radiomics into predictive models for low nuclear grade DCIS using machine learning.

Scientific reports
Predicting low nuclear grade DCIS before surgery can improve treatment choices and patient care, thereby reducing unnecessary treatment. Due to the high heterogeneity of DCIS and the limitations of biopsies in fully characterizing tumors, current dia...

MRI radiomics based on machine learning in high-grade gliomas as a promising tool for prediction of CD44 expression and overall survival.

Scientific reports
We aimed to predict CD44 expression and assess its prognostic significance in patients with high-grade gliomas (HGG) using non-invasive radiomics models based on machine learning. Enhanced magnetic resonance imaging, along with the corresponding gene...

Machine learning analysis identified NNMT as a potential therapeutic target for hepatocellular carcinoma based on PCD-related genes.

Scientific reports
Programmed cell death (PCD) plays a critical role in cancer biology, influencing tumor progression and treatment response. This study aims to investigate the role of PCD-related genes in hepatocellular carcinoma (HCC), identifying potential prognosti...

Predicting 30-day mortality in hemophagocytic lymphohistiocytosis: clinical features, biochemical parameters, and machine learning insights.

Annals of hematology
This study aims to evaluate the clinical characteristics and biochemical parameters of hemophagocytic lymphohistiocytosis (HLH) patients to predict 30-day mortality. Parameters analyzed include lymphocyte count (L), platelet count (PLT), total protei...

Enhancing Personalized Chemotherapy for Ovarian Cancer: Integrating Gene Expression Data with Machine Learning.

Asian Pacific journal of cancer prevention : APJCP
OBJECTIVE:  Ovarian cancer's complexity and heterogeneity pose significant challenges in treatment, often resulting in suboptimal chemotherapy outcomes. This study aimed to leverage machine learning algorithms, gene selection, and gene expression dat...

Diffusion-Weighted Imaging-Based Radiomics Features and Machine Learning Method to Predict the 90-Day Prognosis in Patients With Acute Ischemic Stroke.

The neurologist
OBJECTIVES: The evaluation of the prognosis of patients with acute ischemic stroke (AIS) is of great significance in clinical practice. We aim to evaluate the feasibility and effectiveness of diffusion-weighted imaging (DWI) image-based radiomics fea...