AIMC Topic: Prognosis

Clear Filters Showing 21 to 30 of 3389 articles

Deep learning assessment of metastatic relapse risk from digitized breast cancer histological slides.

Nature communications
Accurate risk stratification is critical for guiding treatment decisions in early breast cancer. We present an artificial intelligence (AI)-based tool that analyzes digitized tumor slides to predict 5-year metastasis-free survival (MFS) in patients w...

Automated ejection fraction and risk stratification in cardiomyopathy patients with diverse LV geometry using 2D echocardiography.

Scientific reports
Cardiomyopathy often alters left ventricular geometry (LVG), impairing cardiac function. We developed a deep learning (DL) model to estimate left ventricular ejection fraction (LVEF) from echocardiographic images while accounting for LVG variability ...

Development and validation of a modified SOFA score for mortality prediction in candidemia patients.

Scientific reports
Candidemia is a life-threatening bloodstream infection associated with high mortality rates, particularly in critically ill patients. Accurate risk stratification is crucial for timely intervention and could improve patient outcomes. This study aimed...

Predictive model of ulcerative colitis syndrome with ensemble learning and interpretability methods.

Scientific reports
In recent years, the prevalence of chronic diseases such as Ulcerative Colitis (UC) has increased, bringing a heavy burden to healthcare systems. Traditional Chinese Medicine (TCM) stands out for its cost-effective and efficient treatment modalities,...

Prognostic model of lung adenocarcinoma from the perspective of cancer-associated fibroblasts using single-cell and bulk RNA-sequencing.

Scientific reports
Cancer-associated fibroblasts (CAFs) play important roles in the progression of lung adenocarcinoma (LUAD). We examined CAF subgroups via gene ontology, pseudo-time, and cell communication analyses and explored their prognostic value in LUAD using a ...

3Mont: A multi-omics integrative tool for breast cancer subtype stratification.

PloS one
Breast Cancer (BRCA) is a heterogeneous disease, and it is one of the most prevalent cancer types among women. Developing effective treatment strategies that address diverse types of BRCA is crucial. Notably, among different BRCA molecular sub-types,...

Prognostic predictions in psychosis: exploring the complementary role of machine learning models.

BMJ mental health
BACKGROUND: Predicting outcomes in schizophrenia spectrum disorders is challenging due to the variability of individual trajectories. While machine learning (ML) shows promise in outcome prediction, it has not yet been integrated into clinical practi...

Computed tomography-derived quantitative imaging biomarkers enable the prediction of disease manifestations and survival in patients with systemic sclerosis.

RMD open
INTRODUCTION: Systemic sclerosis (SSc) is a complex inflammatory vasculopathy with diverse symptoms and variable disease progression. Despite its known impact on body composition (BC), clinical decision-making has yet to incorporate these biomarkers....

Renal Dysfunction Across the Spectrum of Cardiogenic Shock: Mechanisms, Clinical Implications, and Therapeutic Strategies.

Current heart failure reports
PURPOSE OF REVIEW: This review aims to elucidate the complex interplay between cardiogenic shock (CS) and renal function, detailing the mechanisms of kidney injury, identifying risk factors, and providing a framework for the diagnosis and management ...

Neural network prediction model based on Levy flight and natural biomimetic technology for its application in cancer prediction.

PloS one
Precise forecasting of cancer outcomes is essential for medical professionals to assess the well-being of patients and develop customized therapeutic plans. Despite its importance, achieving precise forecasts remains a formidable challenge. To tackle...