AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Prognosis

Showing 61 to 70 of 3136 articles

Clear Filters

Data-driven survival modeling for breast cancer prognostics: A comparative study with machine learning and traditional survival modeling methods.

PloS one
Background This investigation delves into the potential application of data-driven survival modeling approaches for prognostic assessments of breast cancer survival. The primary objective is to evaluate and compare the ability of machine learning (ML...

Peritoneal cytology predicting distant metastasis in uterine carcinosarcoma: machine learning model development and validation.

World journal of surgical oncology
OBJECTIVE: This study develops and validates a machine learning model using peritoneal cytology to predict distant metastasis in uterine carcinosarcoma, aiding clinical decision-making.

Predictive Model of Objective Response to Nivolumab Monotherapy for Advanced Renal Cell Carcinoma by Machine Learning Using Genetic and Clinical Data: The SNiP-RCC Study.

JCO clinical cancer informatics
PURPOSE: Anti-PD-1 antibodies are widely used for cancer treatment, including in advanced renal cell carcinoma (RCC). However, the therapeutic response varies among patients. This study aimed to predict tumor response to nivolumab anti-PD-1 antibody ...

Construction and validation of prognostic model for ICU mortality in cardiac arrest patients: an interpretable machine learning modeling approach.

European journal of medical research
BACKGROUND: The incidence and mortality of cardiac arrest (CA) is high. We developed interpretable machine learning models for early prediction of ICU mortality risk in patients diagnosed with CA.

Leveraging TME features and multi-omics data with an advanced deep learning framework for improved Cancer survival prediction.

Scientific reports
Glioma, a malignant intracranial tumor with high invasiveness and heterogeneity, significantly impacts patient survival. This study integrates multi-omics data to improve prognostic prediction and identify therapeutic targets. Using single-cell data ...

Knowledge Uncertainty Estimation for Reliable Clinical Decision Support: A Delirium Risk Prognosis Case Study.

Studies in health technology and informatics
INTRODUCTION: Predictive models hold significant potential in healthcare, but their adoption in clinical settings is hampered by limited trust due to their inability to recognize when presented with unfamiliar data. Estimating knowledge uncertainty (...

Preoperative lymph node metastasis risk assessment in invasive micropapillary carcinoma of the breast: development of a machine learning-based predictive model with a web-based calculator.

World journal of surgical oncology
BACKGROUND: Invasive micropapillary carcinoma (IMPC) is a rare subtype of breast cancer characterized by a high risk of lymph node metastasis (LNM). The study aimed to identify predictors of LNM and to develop a machine learning (ML)-based risk predi...

Machine Learning-Enhanced Cerebrospinal Fluid N-Glycome for the Diagnosis and Prognosis of Primary Central Nervous System Lymphoma.

Journal of proteome research
The diagnosis and prognosis of Primary Central Nervous System Lymphoma (PCNSL) present significant challenges. In this study, the potential use of machine learning algorithms in diagnosing and predicting the prognosis for PCNSL based on cerebrospinal...

Integrating machine learning models with multi-omics analysis to decipher the prognostic significance of mitotic catastrophe heterogeneity in bladder cancer.

Biology direct
BACKGROUND: Mitotic catastrophe is well-known as a major pathway of endogenous tumor death, but the prognostic significance of its heterogeneity regarding bladder cancer (BLCA) remains unclear.