AIMC Topic: Proof of Concept Study

Clear Filters Showing 141 to 150 of 212 articles

Detection and localisation of hip fractures on anteroposterior radiographs with artificial intelligence: proof of concept.

Clinical radiology
AIM: To investigate the feasibility of applying a deep convolutional neural network (CNN) for detection/localisation of acute proximal femoral fractures (APFFs) on hip radiographs.

An interpretation algorithm for molecular diagnosis of bacterial vaginosis in a maternity hospital using machine learning: proof-of-concept study.

Diagnostic microbiology and infectious disease
Allplex Bacterial vaginosis assay (Seegene, South Korea) is a molecular test for bacterial vaginosis (BV). A machine learning algorithm was devised on 200 samples (BV = 23, non-BV = 177) converting 7 identified bacterial strains polymerase chain reac...

Evaluating a Semiautonomous Brain-Computer Interface Based on Conformal Geometric Algebra and Artificial Vision.

Computational intelligence and neuroscience
In this paper, we evaluate a semiautonomous brain-computer interface (BCI) for manipulation tasks. In such a system, the user controls a robotic arm through motor imagery commands. In traditional process-control BCI systems, the user has to provide t...

The potential of machine learning to predict postoperative pancreatic fistula based on preoperative, non-contrast-enhanced CT: A proof-of-principle study.

Surgery
BACKGROUND: Postoperative pancreatic fistula remains an unsolved challenge after pancreatoduodenectomy. Important in this regard is the presence of a soft pancreatic texture which is a major risk factor. Advances in machine learning and texture analy...

Non-invasive diagnosis of non-alcoholic steatohepatitis and fibrosis with the use of omics and supervised learning: A proof of concept study.

Metabolism: clinical and experimental
BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) affects 25-30% of the general population and is characterized by the presence of non-alcoholic fatty liver (NAFL) that can progress to non-alcoholic steatohepatitis (NASH), liver fibrosis and cirr...

The hidden information in patient-reported outcomes and clinician-assessed outcomes: multiple sclerosis as a proof of concept of a machine learning approach.

Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology
Machine learning (ML) applied to patient-reported (PROs) and clinical-assessed outcomes (CAOs) could favour a more predictive and personalized medicine. Our aim was to confirm the important role of applying ML to PROs and CAOs of people with relapsin...

Towards early monitoring of chemotherapy-induced drug resistance based on single cell metabolomics: Combining single-probe mass spectrometry with machine learning.

Analytica chimica acta
Despite the presence of methods evaluating drug resistance during chemotherapies, techniques, which allow for monitoring the degree of drug resistance in early chemotherapeutic stage from single cells in their native microenvironment, are still absen...

Bio-inspired robotic dog paddling: kinematic and hydro-dynamic analysis.

Bioinspiration & biomimetics
Research on quadrupedal robots inspired by canids or felids have been widely reported and demonstrated. However, none of these legged robots can deal with difficult environments that include water, such as small lakes, streams, rain, mud, flooded ter...

Pushing the Boundaries of Molecular Representation for Drug Discovery with the Graph Attention Mechanism.

Journal of medicinal chemistry
Hunting for chemicals with favorable pharmacological, toxicological, and pharmacokinetic properties remains a formidable challenge for drug discovery. Deep learning provides us with powerful tools to build predictive models that are appropriate for t...