AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Proportional Hazards Models

Showing 51 to 60 of 239 articles

Clear Filters

Survival analysis for lung cancer patients: A comparison of Cox regression and machine learning models.

International journal of medical informatics
INTRODUCTION: Survival analysis based on cancer registry data is of paramount importance for monitoring the effectiveness of health care. As new methods arise, the compendium of statistical tools applicable to cancer registry data grows. In recent ye...

Metabolic dysfunctions predict the development of Alzheimer's disease: Statistical and machine learning analysis of EMR data.

Alzheimer's & dementia : the journal of the Alzheimer's Association
INTRODUCTION: The incidence of Alzheimer's disease (AD) and obesity rise concomitantly. This study examined whether factors affecting metabolism, race/ethnicity, and sex are associated with AD development.

Admission blood tests predicting survival of SARS-CoV-2 infected patients: a practical implementation of graph convolution network in imbalance dataset.

BMC infectious diseases
BACKGROUND: Predicting an individual's risk of death from COVID-19 is essential for planning and optimising resources. However, since the real-world mortality rate is relatively low, particularly in places like Hong Kong, this makes building an accur...

Integrating knowledge graphs into machine learning models for survival prediction and biomarker discovery in patients with non-small-cell lung cancer.

Journal of translational medicine
Accurate survival prediction for Non-Small Cell Lung Cancer (NSCLC) patients remains a significant challenge for the scientific and clinical community despite decades of advanced analytics. Addressing this challenge not only helps inform the critical...

Personalized approach to malignant struma ovarii: Insights from a web-based machine learning tool.

International journal of gynaecology and obstetrics: the official organ of the International Federation of Gynaecology and Obstetrics
OBJECTIVES: Malignant struma ovarii (MSO) is a rare ovarian tumor characterized by mature thyroid tissue. The diverse symptoms and uncommon nature of MSO can create difficulties in its diagnosis and treatment. This study aimed to analyze data and use...

Comparative study of machine learning and statistical survival models for enhancing cervical cancer prognosis and risk factor assessment using SEER data.

Scientific reports
Cervical cancer is a common malignant tumor of the female reproductive system and the leading cause of death among women worldwide. The survival prediction method can be used to effectively analyze the time to event, which is essential in any clinica...

Machine learning-based individualized survival prediction model for prognosis in osteosarcoma: Data from the SEER database.

Medicine
Patient outcomes of osteosarcoma vary because of tumor heterogeneity and treatment strategies. This study aimed to compare the performance of multiple machine learning (ML) models with the traditional Cox proportional hazards (CoxPH) model in predict...

Leveraging SEER data through machine learning to predict distant lymph node metastasis and prognosticate outcomes in hepatocellular carcinoma patients.

The journal of gene medicine
OBJECTIVES: This study aims to develop and validate machine learning-based diagnostic and prognostic models to predict the risk of distant lymph node metastases (DLNM) in patients with hepatocellular carcinoma (HCC) and to evaluate the prognosis for ...

sparsesurv: a Python package for fitting sparse survival models via knowledge distillation.

Bioinformatics (Oxford, England)
MOTIVATION: Sparse survival models are statistical models that select a subset of predictor variables while modeling the time until an event occurs, which can subsequently help interpretability and transportability. The subset of important features i...