AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Radiomics

Showing 131 to 140 of 519 articles

Clear Filters

A Fusion Model of MRI Deep Transfer Learning and Radiomics for Discriminating between Pilocytic Astrocytoma and Adamantinomatous Craniopharyngioma.

Academic radiology
RATIONALE AND OBJECTIVES: This study aimed to develop and validate a fusion model combining MRI deep transfer learning (DTL) and radiomics for discriminating between pilocytic astrocytoma (PA) and adamantinomatous craniopharyngioma (ACP) in the sella...

Noncontrast MRI-based machine learning and radiomics signature can predict the severity of primary lower limb lymphedema.

Journal of vascular surgery. Venous and lymphatic disorders
OBJECTIVE: According to International Lymphology Society guidelines, the severity of lymphedema is determined by the difference in volume between the affected limb and the healthy side divided by the volume of the healthy side. However, this method o...

Radiomics and Artificial Intelligence Landscape for [F]FDG PET/CT in Multiple Myeloma.

Seminars in nuclear medicine
[F]FDG PET/CT is a powerful imaging modality of high performance in multiple myeloma (MM) and is considered the appropriate method for assessing treatment response in this disease. On the other hand, due to the heterogeneous and sometimes complex pat...

Real-World and Clinical Trial Validation of a Deep Learning Radiomic Biomarker for PD-(L)1 Immune Checkpoint Inhibitor Response in Advanced Non-Small Cell Lung Cancer.

JCO clinical cancer informatics
PURPOSE: This study developed and validated a novel deep learning radiomic biomarker to estimate response to immune checkpoint inhibitor (ICI) therapy in advanced non-small cell lung cancer (NSCLC) using real-world data (RWD) and clinical trial data.

Predicting axillary lymph node metastasis in breast cancer using a multimodal radiomics and deep learning model.

Frontiers in immunology
OBJECTIVE: To explore the value of combined radiomics and deep learning models using different machine learning algorithms based on mammography (MG) and magnetic resonance imaging (MRI) for predicting axillary lymph node metastasis (ALNM) in breast c...

Non-invasive Prediction of Lymph Node Metastasis in NSCLC Using Clinical, Radiomics, and Deep Learning Features From F-FDG PET/CT Based on Interpretable Machine Learning.

Academic radiology
PURPOSE: This study aimed to develop and evaluate a machine learning model combining clinical, radiomics, and deep learning features derived from PET/CT imaging to predict lymph node metastasis (LNM) in patients with non-small cell lung cancer (NSCLC...

Enhancing brain tumor classification by integrating radiomics and deep learning features: A comprehensive study utilizing ensemble methods on MRI scans.

Journal of X-ray science and technology
BACKGROUND AND OBJECTIVE: This study aims to assess the effectiveness of combining radiomics features (RFs) with deep learning features (DFs) for classifying brain tumors-specifically Glioma, Meningioma, and Pituitary Tumor-using MRI scans and advanc...

Radiomics-based machine learning for automated detection of Pneumothorax in CT scans.

PloS one
The increasing complexity of diagnostic imaging often leads to misinterpretations and diagnostic errors, particularly in critical conditions such as pneumothorax. This study addresses the pressing need for improved diagnostic accuracy in CT scans by ...

The Value of Machine Learning-based Radiomics Model Characterized by PET Imaging with Ga-FAPI in Assessing Microvascular Invasion of Hepatocellular Carcinoma.

Academic radiology
RATIONALE AND OBJECTIVES: This study aimed to develop a radiomics model characterized by Ga-fibroblast activation protein inhibitors (FAPI) positron emission tomography (PET) imaging to predict microvascular invasion (MVI) of hepatocellular carcinoma...