AIMC Topic: Receptor, ErbB-2

Clear Filters Showing 1 to 10 of 99 articles

Cohesive data analysis for the identification of prognostic hub genes and significant pathways associated with HER2 + and TN breast cancer types.

Scientific reports
Breast cancer is the most prevalent and lethal form of cancer being the utmost common medical concern of women. Breast cancer etiology implicates numerous cellular protein receptors such as estrogen receptors (ER), progesterone receptors (PR), and hu...

Deep learning assessment of metastatic relapse risk from digitized breast cancer histological slides.

Nature communications
Accurate risk stratification is critical for guiding treatment decisions in early breast cancer. We present an artificial intelligence (AI)-based tool that analyzes digitized tumor slides to predict 5-year metastasis-free survival (MFS) in patients w...

Integrating attention networks into a hybrid model for HER2 status prediction in breast cancer.

Biochemical and biophysical research communications
Breast cancer is one of the most prevalent cancers amongst women, caused by uncontrolled cell growth in breast tissue. Human Epidermal growth factor Receptor 2 (HER2) proteins play a vital role in regulating normal breast cell development and divisio...

Machine learning prediction of HER2-low expression in breast cancers based on hematoxylin-eosin-stained slides.

Breast cancer research : BCR
BACKGROUND: Treatment with HER2-targeted therapies is recommended for HER2-positive breast cancer patients with HER2 gene amplification or protein overexpression. Interestingly, recent clinical trials of novel HER2-targeted therapies demonstrated pro...

Engineering TCR-controlled fuzzy logic into CAR T cells enhances therapeutic specificity.

Cell
Chimeric antigen receptor (CAR) T cell immunotherapy represents a breakthrough in the treatment of hematological malignancies, but poor specificity has limited its applicability to solid tumors. By contrast, natural T cells harboring T cell receptors...

Identification of M1 macrophage infiltration-related genes for immunotherapy in Her2-positive breast cancer based on bioinformatics analysis and machine learning.

Scientific reports
Over the past several decades, there has been a significant increase in the number of breast cancer patients. Among the four subtypes of breast cancer, Her2-positive breast cancer is one of the most aggressive breast cancers. In this study, we screen...

Toward Accurate Deep Learning-Based Prediction of Ki67, ER, PR, and HER2 Status From H&E-Stained Breast Cancer Images.

Applied immunohistochemistry & molecular morphology : AIMM
Despite improvements in machine learning algorithms applied to digital pathology, only moderate accuracy, to predict molecular information from histology alone, has been achieved so far. One of the obstacles is the lack of large data sets to properly...

Dual-Modality Virtual Biopsy System Integrating MRI and MG for Noninvasive Predicting HER2 Status in Breast Cancer.

Academic radiology
RATIONALE AND OBJECTIVES: Accurate determination of human epidermal growth factor receptor 2 (HER2) expression is critical for guiding targeted therapy in breast cancer. This study aimed to develop and validate a deep learning (DL)-based decision-mak...

A new strategy to HER2-specific antibody discovery through artificial intelligence-powered phage display screening based on the Trastuzumab framework.

Biochimica et biophysica acta. Molecular basis of disease
Human epidermal growth factor receptor 2 (HER2) is a recognized drug target, and it serves as a critical target for various cancer treatments, necessitating the discovery of more antibodies for therapeutic and detection purposes. Here, we have develo...