AIMC Topic: Retrospective Studies

Clear Filters Showing 1321 to 1330 of 9539 articles

Machine learning to predict lymph node metastasis in T1 esophageal squamous cell carcinoma: a multicenter study.

International journal of surgery (London, England)
BACKGROUND: Existing models do poorly when it comes to quantifying the risk of lymph node metastases (LNM). This study aimed to develop a machine-learning model for LNM in patients with T1 esophageal squamous cell carcinoma (ESCC).

Development and validation of a deep learning model for predicting gastric cancer recurrence based on CT imaging: a multicenter study.

International journal of surgery (London, England)
INTRODUCTION: The postoperative recurrence of gastric cancer (GC) has a significant impact on the overall prognosis of patients. Therefore, accurately predicting the postoperative recurrence of GC is crucial.

Using machine learning models for predicting monthly iPTH levels in hemodialysis patients.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVE: Intact parathyroid hormone (iPTH), also known as active parathyroid hormone, is an important indicator commonly for monitoring secondary hyperparathyroidism (SHPT) in patients undergoing hemodialysis. The aim of this study w...

Predicting sinonasal inverted papilloma attachment using machine learning: Current lessons and future directions.

American journal of otolaryngology
BACKGROUND: Hyperostosis is a common radiographic feature of inverted papilloma (IP) tumor origin on computed tomography (CT). Herein, we developed a machine learning (ML) model capable of analyzing CT images and identifying IP attachment sites.

Machine learning is better than surgeons at assessing unicompartmental knee replacement radiographs.

The Knee
BACKGROUND: Poor results occasionally occur after unicompartmental knee replacement (UKR). It is often difficult, even for experienced surgeons, to determine why patients have poor outcomes from radiographs. The aim was to compare the ability of expe...

Impact of deep learning reconstruction on radiation dose reduction and cancer risk in CT examinations: a real-world clinical analysis.

European radiology
PURPOSE: The purpose of this study is to estimate the extent to which the implementation of deep learning reconstruction (DLR) may reduce the risk of radiation-induced cancer from CT examinations, utilizing real-world clinical data.

Development and Validation of a Machine Learning Radiomics Model based on Multiparametric MRI for Predicting Progesterone Receptor Expression in Meningioma: A Multicenter Study.

Academic radiology
RATIONALE AND OBJECTIVES: This study aimed to develop and validate a machine learning-based prediction model for preoperatively predicting progesterone receptor (PR) expression in meningioma patients using multiparametric magnetic resonance imaging (...

Evaluation and comparison of synthetic computed tomography algorithms with 3T MRI for prostate radiotherapy: AI-based versus bulk density method.

Journal of applied clinical medical physics
PURPOSE: Synthetic computed tomography (sCT)-algorithms, which generate computed tomography images from magnetic resonance imaging data, are becoming part of the clinical radiotherapy workflow. The aim of this retrospective study was to evaluate and ...

Left Atrial Wall Thickness Measured by a Machine Learning Method Predicts AF Recurrence After Pulmonary Vein Isolation.

Journal of cardiovascular electrophysiology
BACKGROUND: Left atrial (LA) remodeling plays a significant role in the progression of atrial fibrillation (AF). Although LA wall thickness (LAWT) has emerged as an indicator of structural remodeling, its impact on AF outcomes remains unclear. We aim...