AIMC Topic: Retrospective Studies

Clear Filters Showing 371 to 380 of 9155 articles

Construction and validation of a predictive model for intracardiac thrombus risk in patients with dilated cardiomyopathy: a retrospective study.

BMC cardiovascular disorders
BACKGROUND: Systemic embolic events due to exfoliation of intracardiac thrombus (ICT) are one of the catastrophic complications of dilated cardiomyopathy (DCM). This study intended to develop a prediction model to predict the risk of ICT in patients ...

Machine learning-based risk prediction model for pertussis in children: a multicenter retrospective study.

BMC infectious diseases
BACKGROUND: Pertussis is a highly contagious respiratory disease. Even though vaccination has reduced the incidence, cases have resurfaced in certain regions due to immune escape and waning vaccine efficacy. Identifying high-risk patients to mitigate...

Development and validation of inpatient mortality prediction models for patients with hyperglycemic crisis using machine learning approaches.

BMC endocrine disorders
BACKGROUND: Hyperglycemic crisis is one of the most common and severe complications of diabetes mellitus, associated with a high motarlity rate. Emergency admissions due to hyperglycemic crisis remain prevalent and challenging. This study aimed to de...

A Novel Visual Model for Predicting Prognosis of Resected Hepatoblastoma: A Multicenter Study.

Academic radiology
RATIONALE AND OBJECTIVES: This study aimed to evaluate the application of a contrast-enhanced CT-based visual model in predicting postoperative prognosis in patients with hepatoblastoma (HB).

Multicenter Development and Prospective Validation of eCARTv5: A Gradient-Boosted Machine-Learning Early Warning Score.

Critical care explorations
BACKGROUND: Early detection of clinical deterioration using machine-learning early warning scores may improve outcomes. However, most implemented scores were developed using logistic regression, only underwent retrospective validation, and were not t...

Predicting Risk for Patent Ductus Arteriosus in the Neonate: A Machine Learning Analysis.

Medicina (Kaunas, Lithuania)
: Patent ductus arteriosus (PDA) is common in newborns, being associated with high morbidity and mortality. While maternal and neonatal conditions are known contributors, few studies use advanced machine learning (ML) as predictive factors. This stud...

Machine learning-based prognostic model for bloodstream infections in hematological malignancies using Th1/Th2 cytokines.

BMC infectious diseases
OBJECTIVE: Bloodstream infection (BSI) is a significant cause of mortality in patients with hematologic malignancies(HMs), particularly amid rising antibiotic resistance. This study aimed to analyze pathogen distribution, drug-resistance patterns and...

Automated segmentation of brain metastases in T1-weighted contrast-enhanced MR images pre and post stereotactic radiosurgery.

BMC medical imaging
BACKGROUND AND PURPOSE: Accurate segmentation of brain metastases on Magnetic Resonance Imaging (MRI) is tedious and time-consuming for radiologists that could be optimized with deep learning (DL). Previous studies assessed several DL algorithms focu...

Preliminary evaluation of ChatGPT model iterations in emergency department diagnostics.

Scientific reports
Large language model chatbots such as ChatGPT have shown the potential in assisting health professionals in emergency departments (EDs). However, the diagnostic accuracy of newer ChatGPT models remains unclear. This retrospective study evaluated the ...