AIMC Topic: Retrospective Studies

Clear Filters Showing 371 to 380 of 9537 articles

Deep Learning-Based Algorithm for Automatic Quantification of Nigrosome-1 and Parkinsonism Classification Using Susceptibility Map-Weighted MRI.

AJNR. American journal of neuroradiology
BACKGROUND AND PURPOSE: The diagnostic performance of deep learning model that simultaneously detecting and quantifying nigrosome-1 abnormality by using susceptibility map-weighted imaging (SMwI) remains unexplored. This study aimed to develop and va...

Development and Evaluation of Automated Artificial Intelligence-Based Brain Tumor Response Assessment in Patients with Glioblastoma.

AJNR. American journal of neuroradiology
This project aimed to develop and evaluate an automated, AI-based, volumetric brain tumor MRI response assessment algorithm on a large cohort of patients treated at a high-volume brain tumor center. We retrospectively analyzed data from 634 patients ...

Automated Quantification of Cerebral Microbleeds in SWI: Association with Vascular Risk Factors, White Matter Hyperintensity Burden, and Cognitive Function.

AJNR. American journal of neuroradiology
BACKGROUND AND PURPOSE: The amount and distribution of cerebral microbleeds (CMB) are important risk factors for cognitive impairment. Our objective was to train and validate a deep learning (DL)-based segmentation model for cerebral microbleeds (CMB...

Deep learning model for predicting the RAS oncogene status in colorectal cancer liver metastases.

Journal of cancer research and therapeutics
BACKGROUND: To develop a deep learning radiomics (DLR) model based on contrast-enhanced computed tomography (CECT) to assess the rat sarcoma (RAS) oncogene status and predict targeted therapy response in colorectal cancer liver metastases (CRLM).

Artificial intelligence for early detection of lung cancer in GPs' clinical notes: a retrospective observational cohort study.

The British journal of general practice : the journal of the Royal College of General Practitioners
BACKGROUND: The journey of >80% of patients diagnosed with lung cancer starts in general practice. About 75% of patients are diagnosed when it is at an advanced stage (3 or 4), leading to >80% mortality within 1 year at present. The long-term data in...

Reirradiation for recurrent glioblastoma: the significance of the residual tumor volume.

Journal of neuro-oncology
PURPOSE: Recurrent glioblastoma has a poor prognosis, and its optimal management remains unclear. Reirradiation (re-RT) is a promising treatment option, but long-term outcomes and optimal patient selection criteria are not well established.

Forecasting optimal treatments in relapsed/refractory mature T- and NK-cell lymphomas: A global PETAL Consortium study.

British journal of haematology
There is no standard of care in relapsed/refractory T-cell/natural killer-cell lymphomas. Patients often cycle through cytotoxic chemotherapy (CC), epigenetic modifiers (EM) or small molecule inhibitors (SMI) empirically. Ideal therapy at each line r...

Machine Learning for Predicting Critical Events Among Hospitalized Children.

JAMA network open
IMPORTANCE: Unrecognized deterioration among hospitalized children is associated with a high risk of mortality and morbidity. The current approach to pediatric risk stratification is fragmented, as each hospital unit (emergency, ward, or intensive ca...

Machine Learning Multimodal Model for Delirium Risk Stratification.

JAMA network open
IMPORTANCE: Automating the identification of risk for developing hospital delirium with models that use machine learning (ML) could facilitate more rapid prevention, identification, and treatment of delirium. However, there are very few reports on th...

Predicting preeclampsia in early pregnancy using clinical and laboratory data via machine learning model.

BMC medical informatics and decision making
BACKGROUND: This study was performed to characterize the relationship of various laboratory test indicators with clinical information and Preeclampsia (PE) development. Then, prediction models for early-onset preeclampsia (EOPE), late-onset preeclamp...