AI Medical Compendium Topic:
Risk Factors

Clear Filters Showing 821 to 830 of 2361 articles

Multimodal Machine Learning for Prediction of 30-Day Readmission Risk in Elderly Population.

The American journal of medicine
BACKGROUND: Readmission within 30 days is a prevalent issue among elderly patients, linked to unfavorable health outcomes. Our objective was to develop and validate multimodal machine learning models for predicting 30-day readmission risk in elderly ...

Multistep validation of a post-ERCP pancreatitis prediction system integrating multimodal data: a multicenter study.

Gastrointestinal endoscopy
BACKGROUND AND AIMS: The impact of various categories of information on the prediction of post-ERCP pancreatitis (PEP) remains uncertain. We comprehensively investigated the risk factors associated with PEP by constructing and validating a model inco...

Machine Learning-Based Predictive Models for Patients with Venous Thromboembolism: A Systematic Review.

Thrombosis and haemostasis
BACKGROUND:  Venous thromboembolism (VTE) is a chronic disorder with a significant health and economic burden. Several VTE-specific clinical prediction models (CPMs) have been used to assist physicians in decision-making but have several limitations....

Machine Learning Approach to Study Social Determinants of Chronic Illness in India: A Comparative Analysis.

Indian journal of public health
BACKGROUND: Several studies on noncommunicable diseases (NCDs) have been carried out worldwide, the basis of most of which is the identification of risk factors-modifiable (or behavioral) and metabolic. Majority of the NCDs are due to sociodemographi...

Performance of risk models to predict mortality risk for patients with heart failure: evaluation in an integrated health system.

Clinical research in cardiology : official journal of the German Cardiac Society
BACKGROUND: Referral of patients with heart failure (HF) who are at high mortality risk for specialist evaluation is recommended. Yet, most tools for identifying such patients are difficult to implement in electronic health record (EHR) systems.

Electrocardiography-based Artificial Intelligence Algorithms Aid in Prediction of Long-term Mortality After Kidney Transplantation.

Transplantation
BACKGROUND: Predicting long-term mortality postkidney transplantation (KT) using baseline clinical data presents significant challenges. This study aims to evaluate the predictive power of artificial intelligence (AI)-enabled analysis of preoperative...

Generalizability of machine learning models predicting 30-day unplanned readmission after primary total knee arthroplasty using a nationally representative database.

Medical & biological engineering & computing
Unplanned readmission after primary total knee arthroplasty (TKA) costs an average of US $39,000 per episode and negatively impacts patient outcomes. Although predictive machine learning (ML) models show promise for risk stratification in specific po...

Uncovering Predictors of Low Hippocampal Volume: Evidence from a Large-Scale Machine-Learning-Based Study in the UK Biobank.

Neuroepidemiology
INTRODUCTION: Hippocampal atrophy is an established biomarker for conversion from the normal ageing process to developing cognitive impairment and dementia. This study used a novel hypothesis-free machine-learning approach, to uncover potential risk ...

Development of risk-score model in patients with negative surgical margin after robot-assisted radical prostatectomy.

Scientific reports
A total of 739 patients underwent RARP as initial treatment for PCa from November 2011 to October 2018. Data on BCR status, clinical and pathological parameters were collected from the clinical records. After excluding cases with neoadjuvant and/or a...

Machine learning-based analysis for prediction of surgical necrotizing enterocolitis in very low birth weight infants using perinatal factors: a nationwide cohort study.

European journal of pediatrics
Early prediction of surgical necrotizing enterocolitis (sNEC) in preterm infants is important. However, owing to the complexity of the disease, identifying infants with NEC at a high risk for surgical intervention is difficult. We developed a machine...