AIMC Topic: RNA, Messenger

Clear Filters Showing 21 to 30 of 234 articles

Interpreting deep neural networks for the prediction of translation rates.

BMC genomics
BACKGROUND: The 5' untranslated region of mRNA strongly impacts the rate of translation initiation. A recent convolutional neural network (CNN) model accurately quantifies the relationship between massively parallel synthetic 5' untranslated regions ...

Predicting synthetic mRNA stability using massively parallel kinetic measurements, biophysical modeling, and machine learning.

Nature communications
mRNA degradation is a central process that affects all gene expression levels, though it remains challenging to predict the stability of a mRNA from its sequence, due to the many coupled interactions that control degradation rate. Here, we carried ou...

Development of a web-based tool for estimating individualized survival curves in glioblastoma using clinical, mRNA, and tumor microenvironment features with fusion techniques.

Clinical & translational oncology : official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico
OBJECTIVE: Glioblastoma (GBM), one of the most common brain tumors, is known for its low survival rates and poor treatment responses. This study aims to create a robust predictive model that integrates multiple feature types, including clinical data,...

TransC-ac4C: Identification of N4-Acetylcytidine (ac4C) Sites in mRNA Using Deep Learning.

IEEE/ACM transactions on computational biology and bioinformatics
N4-acetylcytidine (ac4C) is a post-transcriptional modification in mRNA that is critical in mRNA translation in terms of stability and regulation. In the past few years, numerous approaches employing convolutional neural networks (CNN) and Transforme...

Rational Design of Lipid Nanoparticles for Enhanced mRNA Vaccine Delivery via Machine Learning.

Small (Weinheim an der Bergstrasse, Germany)
Since the coronavirus pandemic, mRNA vaccines have revolutionized the field of vaccinology. Lipid nanoparticles (LNPs) are proposed to enhance mRNA delivery efficiency; however, their design is suboptimal. Here, a rational method for designing LNPs i...

Identification of immune-related biomarkers for intracerebral hemorrhage diagnosis based on RNA sequencing and machine learning.

Frontiers in immunology
BACKGROUND: Intracerebral hemorrhage (ICH) is a severe stroke subtype with high morbidity, disability, and mortality rates. Currently, no biomarkers for ICH are available for use in clinical practice. We aimed to explore the roles of RNAs in ICH path...

DRpred: A Novel Deep Learning-Based Predictor for Multi-Label mRNA Subcellular Localization Prediction by Incorporating Bayesian Inferred Prior Label Relationships.

Biomolecules
The subcellular localization of messenger RNA (mRNA) not only helps us to understand the localization regulation of gene expression but also helps to understand the relationship between RNA localization pattern and human disease mechanism, which has ...

Benchmarking the negatives: Effect of negative data generation on the classification of miRNA-mRNA interactions.

PLoS computational biology
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression post-transcriptionally. In animals, this regulation is achieved via base-pairing with partially complementary sequences on mainly 3' UTR region of messenger RNAs (mRNAs). Comp...

Adapting nanopore sequencing basecalling models for modification detection via incremental learning and anomaly detection.

Nature communications
We leverage machine learning approaches to adapt nanopore sequencing basecallers for nucleotide modification detection. We first apply the incremental learning (IL) technique to improve the basecalling of modification-rich sequences, which are usuall...

Current limitations in predicting mRNA translation with deep learning models.

Genome biology
BACKGROUND: The design of nucleotide sequences with defined properties is a long-standing problem in bioengineering. An important application is protein expression, be it in the context of research or the production of mRNA vaccines. The rate of prot...