AIMC Topic:
ROC Curve

Clear Filters Showing 1381 to 1390 of 3174 articles

Prediction of premature all-cause mortality in patients receiving peritoneal dialysis using modified artificial neural networks.

Aging
Premature all-cause mortality is high in patients receiving peritoneal dialysis (PD). The accurate and early prediction of mortality is critical and difficult. Three prediction models, the logistic regression (LR) model, artificial neural network (AN...

Texture analysis of muscle MRI: machine learning-based classifications in idiopathic inflammatory myopathies.

Scientific reports
To develop a machine learning (ML) model that predicts disease groups or autoantibodies in patients with idiopathic inflammatory myopathies (IIMs) using muscle MRI radiomics features. Twenty-two patients with dermatomyositis (DM), 14 with amyopathic ...

COVID-Classifier: an automated machine learning model to assist in the diagnosis of COVID-19 infection in chest X-ray images.

Scientific reports
Chest-X ray (CXR) radiography can be used as a first-line triage process for non-COVID-19 patients with pneumonia. However, the similarity between features of CXR images of COVID-19 and pneumonia caused by other infections makes the differential diag...

Development and Validation of Machine Learning Models to Predict Admission From Emergency Department to Inpatient and Intensive Care Units.

Annals of emergency medicine
STUDY OBJECTIVE: This study aimed to develop and validate 2 machine learning models that use historical and current-visit patient data from electronic health records to predict the probability of patient admission to either an inpatient unit or ICU a...

Drug repurposing for hyperlipidemia associated disorders: An integrative network biology and machine learning approach.

Computational biology and chemistry
Hyperlipidemia causes diseases like cardiovascular disease, cancer, Type II Diabetes and Alzheimer's disease. Drugs that specifically target HL associated diseases are required for treatment. 34 KEGG pathways targeted by lipid lowering drugs were use...

ai-corona: Radiologist-assistant deep learning framework for COVID-19 diagnosis in chest CT scans.

PloS one
The development of medical assisting tools based on artificial intelligence advances is essential in the global fight against COVID-19 outbreak and the future of medical systems. In this study, we introduce ai-corona, a radiologist-assistant deep lea...

Pure Ion Chromatograms Combined with Advanced Machine Learning Methods Improve Accuracy of Discriminant Models in LC-MS-Based Untargeted Metabolomics.

Molecules (Basel, Switzerland)
Untargeted metabolomics based on liquid chromatography coupled with mass spectrometry (LC-MS) can detect thousands of features in samples and produce highly complex datasets. The accurate extraction of meaningful features and the building of discrimi...

Machine learning-based mortality prediction model for heat-related illness.

Scientific reports
In this study, we aimed to develop and validate a machine learning-based mortality prediction model for hospitalized heat-related illness patients. After 2393 hospitalized patients were extracted from a multicentered heat-related illness registry in ...

Machine learning based models for prediction of subtype diagnosis of primary aldosteronism using blood test.

Scientific reports
Primary aldosteronism (PA) is associated with an increased risk of cardiometabolic diseases, especially in unilateral subtype. Despite its high prevalence, the case detection rate of PA is limited, partly because of no clinical models available in ge...

Projecting COVID-19 disease severity in cancer patients using purposefully-designed machine learning.

BMC infectious diseases
BACKGROUND: Accurately predicting outcomes for cancer patients with COVID-19 has been clinically challenging. Numerous clinical variables have been retrospectively associated with disease severity, but the predictive value of these variables, and how...