AIMC Topic: ROC Curve

Clear Filters Showing 1591 to 1600 of 3403 articles

Prediction of Sepsis in COVID-19 Using Laboratory Indicators.

Frontiers in cellular and infection microbiology
BACKGROUND: The outbreak of coronavirus disease 2019 (COVID-19) has become a global public health concern. Many inpatients with COVID-19 have shown clinical symptoms related to sepsis, which will aggravate the deterioration of patients' condition. We...

Machine learning and bioinformatic analysis of brain and blood mRNA profiles in major depressive disorder: A case-control study.

American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics
This study analyzed gene expression messenger RNA data, from cases with major depressive disorder (MDD) and controls, using supervised machine learning (ML). We built on the methodology of prior studies to obtain more generalizable/reproducible resul...

Optimizing predictive strategies for acute kidney injury after major vascular surgery.

Surgery
BACKGROUND: Postoperative acute kidney injury is common after major vascular surgery and is associated with increased morbidity, mortality, and cost. High-performance risk stratification using a machine learning model can inform strategies that mitig...

Deep learning differentiates between healthy and diabetic mouse ears from optical coherence tomography angiography images.

Annals of the New York Academy of Sciences
We trained a deep learning algorithm to use skin optical coherence tomography (OCT) angiograms to differentiate between healthy and type 2 diabetic mice. OCT angiograms were acquired with a custom-built OCT system based on an akinetic swept laser at ...

Diffusion histology imaging differentiates distinct pediatric brain tumor histology.

Scientific reports
High-grade pediatric brain tumors exhibit the highest cancer mortality rates in children. While conventional MRI has been widely adopted for examining pediatric high-grade brain tumors clinically, accurate neuroimaging detection and differentiation o...

Predicting neurological outcome after out-of-hospital cardiac arrest with cumulative information; development and internal validation of an artificial neural network algorithm.

Critical care (London, England)
BACKGROUND: Prognostication of neurological outcome in patients who remain comatose after cardiac arrest resuscitation is complex. Clinical variables, as well as biomarkers of brain injury, cardiac injury, and systemic inflammation, all yield some pr...

Prediction of Patient Management in COVID-19 Using Deep Learning-Based Fully Automated Extraction of Cardiothoracic CT Metrics and Laboratory Findings.

Korean journal of radiology
OBJECTIVE: To extract pulmonary and cardiovascular metrics from chest CTs of patients with coronavirus disease 2019 (COVID-19) using a fully automated deep learning-based approach and assess their potential to predict patient management.

Development and Validation of Machine Learning-based Model for the Prediction of Malignancy in Multiple Pulmonary Nodules: Analysis from Multicentric Cohorts.

Clinical cancer research : an official journal of the American Association for Cancer Research
PURPOSE: Nodule evaluation is challenging and critical to diagnose multiple pulmonary nodules (MPNs). We aimed to develop and validate a machine learning-based model to estimate the malignant probability of MPNs to guide decision-making.

Ensembled deep learning model outperforms human experts in diagnosing biliary atresia from sonographic gallbladder images.

Nature communications
It is still challenging to make accurate diagnosis of biliary atresia (BA) with sonographic gallbladder images particularly in rural area without relevant expertise. To help diagnose BA based on sonographic gallbladder images, an ensembled deep learn...