AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

ROC Curve

Showing 351 to 360 of 3117 articles

Clear Filters

Comparison of Intratumoral and Peritumoral Deep Learning, Radiomics, and Fusion Models for Predicting KRAS Gene Mutations in Rectal Cancer Based on Endorectal Ultrasound Imaging.

Annals of surgical oncology
MAIN OBJECTIVES: We aimed at comparing intratumoral and peritumoral deep learning, radiomics, and fusion models in predicting KRAS mutations in rectal cancer using endorectal ultrasound imaging.

Machine Learning-Based Prediction Model for ICU Mortality After Continuous Renal Replacement Therapy Initiation in Children.

Critical care explorations
BACKGROUND: Continuous renal replacement therapy (CRRT) is the favored renal replacement therapy in critically ill patients. Predicting clinical outcomes for CRRT patients is difficult due to population heterogeneity, varying clinical practices, and ...

Artificial Intelligence in Diagnostics: Enhancing Urine Test Accuracy Using a Mobile Phone-Based Reading System.

Annals of laboratory medicine
BACKGROUND: Urinalysis, an essential diagnostic tool, faces challenges in terms of standardization and accuracy. The use of artificial intelligence (AI) with mobile technology can potentially solve these challenges. Therefore, we investigated the eff...

Machine learning and SHAP value interpretation for predicting comorbidity of cardiovascular disease and cancer with dietary antioxidants.

Redox biology
OBJECTIVE: To develop and validate a machine learning model incorporating dietary antioxidants to predict cardiovascular disease (CVD)-cancer comorbidity and to elucidate the role of antioxidants in disease prediction.

Utilizing machine learning approaches to investigate the relationship between cystatin C and serious complications in esophageal cancer patients after esophagectomy.

Supportive care in cancer : official journal of the Multinational Association of Supportive Care in Cancer
BACKGROUND: The purpose of this study is to investigate the relationship between preoperative cystatin C levels and the risk of serious postoperative complications in esophageal cancer (EC) patients, utilizing advanced machine learning (ML) methodolo...

Machine learning-based predictive models for perioperative major adverse cardiovascular events in patients with stable coronary artery disease undergoing noncardiac surgery.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVE: Accurate prediction of perioperative major adverse cardiovascular events (MACEs) is crucial, as it not only aids clinicians in comprehensively assessing patients' surgical risks and tailoring personalized surgical and periop...

A Machine Learning Approach for Predicting In-Hospital Cardiac Arrest Using Single-Day Vital Signs, Laboratory Test Results, and International Classification of Disease-10 Block for Diagnosis.

Annals of laboratory medicine
BACKGROUND: Predicting in-hospital cardiac arrest (IHCA) is crucial for potentially reducing mortality and improving patient outcomes. However, most models, which rely solely on vital signs, may not comprehensively capture the patients' risk profiles...

Longitudinal Model Shifts of Machine Learning-Based Clinical Risk Prediction Models: Evaluation Study of Multiple Use Cases Across Different Hospitals.

Journal of medical Internet research
BACKGROUND: In recent years, machine learning (ML)-based models have been widely used in clinical domains to predict clinical risk events. However, in production, the performances of such models heavily rely on changes in the system and data. The dyn...

The significance of long chain non-coding RNA signature genes in the diagnosis and management of sepsis patients, and the development of a prediction model.

Frontiers in immunology
BACKGROUND: Sepsis is a life-threatening organ dysfunction condition produced by dysregulation of the host response to infection. It is now characterized by a high clinical morbidity and mortality rate, endangering patients' lives and health. The pur...