AIMC Topic: ROC Curve

Clear Filters Showing 31 to 40 of 3268 articles

Machine learning models for predicting severe acute kidney injury in patients with sepsis-induced myocardial injury.

Scientific reports
Severe acute kidney injury (sAKI) is a prevalent and serious complication among patients with sepsis-induced myocardial injury (SIMI). Prompt and early prediction of sAKI has an important role in timely intervention, ultimately improving the patients...

Development of a machine learning-based model to predict urethral recurrence following radical cystectomy: a multicentre retrospective study and updated meta-analysis.

Scientific reports
Urethral recurrence (UR) following radical cystectomy for bladder cancer represents an aggressive disease failure with typically poor survival outcomes. Our study aimed to assess the predictive risk factors for UR, to develop and validate an easy-to-...

Automated interpretation of cardiotocography using deep learning in a nationwide multicenter study.

Scientific reports
Timely detection of abnormal cardiotocography (CTG) during labor plays a crucial role in enhancing fetal prognosis. Recent research has explored the use of deep learning for CTG interpretation, most studies rely on small, localized datasets or focus ...

Machine learning model for preoperative classification of stromal subtypes in salivary gland pleomorphic adenoma based on ultrasound histogram analysis.

BMC oral health
OBJECTIVES: Accurate preoperative discrimination of salivary gland pleomorphic adenoma (SPA) stromal subtypes is essential for therapeutic plannings. We aimed to establish and test machine learning (ML) models for classification of stromal subtypes i...

A machine learning-based prediction model for sepsis-associated delirium in intensive care unit patients with sepsis-associated acute kidney injury.

Renal failure
Sepsis-associated acute kidney injury (SA-AKI) patients in the ICU often suffer from sepsis-associated delirium (SAD), which is linked to unfavorable outcomes. This research aimed to develop a machine learning-based model for early SAD prediction in ...

Accuracy of Artificial Intelligence for Gatekeeping in Referrals to Specialized Care.

JAMA network open
IMPORTANCE: Integrating artificial intelligence (AI) technologies into gatekeeping holds significant potential, as it efficiently handles repetitive tasks and can process large amounts of information quickly.

Enhancing Antidiabetic Drug Selection Using Transformers: Machine-Learning Model Development.

JMIR medical informatics
BACKGROUND: Diabetes affects millions worldwide. Primary care physicians provide a significant portion of care, and they often struggle with selecting appropriate medications.

Incorporating the STOP-BANG questionnaire improves prediction of cardiovascular events during hospitalization after myocardial infarction.

Scientific reports
Obstructive sleep apnea (OSA) may impact outcomes in acute coronary syndrome (ACS) patients. The Global Registry of Acute Coronary Events (GRACE) score assesses cardiovascular risk post-ACS. This study evaluated whether incorporating the STOP-BANG sc...

Development Of the VAMPCT Score for Predicting Mortality in CKD Patients with COVID-19.

International journal of medical sciences
Chronic kidney disease (CKD) patients with coronavirus disease 2019 (COVID-19) are at significant risk of death. However, clinical identification of high-risk individuals remains suboptimal despite the recognition of many pathophysiological and como...

Prediction of Lymph Node Metastasis in Non-Small Cell Lung Carcinoma Using Primary Tumor Somatic Mutation Data.

JCO clinical cancer informatics
PURPOSE: Lymph node metastasis (LNM) significantly affects prognosis and treatment strategies in non-small cell lung cancer (NSCLC). Current diagnostic methods, including imaging and histopathology, have limited sensitivity and specificity. This stud...