: Diet plays an important role in preventing and managing the progression from prediabetes to type 2 diabetes mellitus (T2DM). This study aims to develop prediction models incorporating specific dietary indicators and explore the performance in T2DM ...
PURPOSE: This study is aimed to develop and validate a machine learning model, which combined radiomics and clinical characteristics to predicting the definitive chemoradiotherapy (dCRT) treatment response in esophageal squamous cell carcinoma (ESCC)...
Journal of the College of Physicians and Surgeons--Pakistan : JCPSP
40325572
OBJECTIVE: To outline immune-cell infiltration and identify diagnostic genes for atherosclerosis (AS) to better understand the potential molecular processes involved in AS development.
OBJECTIVE: This study aimed to develop a machine learning (ML) model integrated with SHapley Additive exPlanations (SHAP) analysis to predict postpartum hemorrhage (PPH) following vaginal deliveries, offering a potential tool for personalized risk as...
Journal of cancer research and therapeutics
40317140
BACKGROUND: To develop a deep learning radiomics (DLR) model based on contrast-enhanced computed tomography (CECT) to assess the rat sarcoma (RAS) oncogene status and predict targeted therapy response in colorectal cancer liver metastases (CRLM).
Post-hepatectomy liver failure (PHLF) is a severe complication following liver surgery. We aimed to develop a novel, interpretable machine learning (ML) model to predict PHLF. We enrolled 312 hepatocellular carcinoma (HCC) patients who underwent hepa...
Anoikis and immune cell infiltration are pivotal factors in the pathophysiological mechanism of diabetic nephropathy (DN), yet a comprehensive understanding of the mechanism is lacking. This work aimed to pinpoint distinctive anoikis-related genes (A...
BACKGROUND: Accurate diagnosis of neuroendocrine neoplasms (NENs) is challenging, especially in poorly differentiated neuroendocrine carcinomas (NECs). This study was aimed to search the best or best combination of neuroendocrine markers in the diagn...