AIMC Topic: Sensitivity and Specificity

Clear Filters Showing 1561 to 1570 of 2880 articles

A RR interval based automated apnea detection approach using residual network.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVE: Apnea is one of the most common conditions that causes sleep-disorder breathing. With growing number of patients worldwide, more and more patients suffer from complications of apnea. But most of them stay untreated due to th...

Prediction of hematoma expansion in spontaneous intracerebral hemorrhage using support vector machine.

EBioMedicine
BACKGROUND: Spontaneous intracerebral hemorrhage (ICH) is a devastating disease with high mortality rate. This study aimed to predict hematoma expansion in spontaneous ICH from routinely available variables by using support vector machine (SVM) metho...

Deep learning enables automatic detection and segmentation of brain metastases on multisequence MRI.

Journal of magnetic resonance imaging : JMRI
BACKGROUND: Detecting and segmenting brain metastases is a tedious and time-consuming task for many radiologists, particularly with the growing use of multisequence 3D imaging.

Artificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy in Africa: a clinical validation study.

The Lancet. Digital health
BACKGROUND: Radical measures are required to identify and reduce blindness due to diabetes to achieve the Sustainable Development Goals by 2030. Therefore, we evaluated the accuracy of an artificial intelligence (AI) model using deep learning in a po...

Importance of coding co-morbidities for APR-DRG assignment: Focus on cardiovascular and respiratory diseases.

Health information management : journal of the Health Information Management Association of Australia
BACKGROUND: The All Patient-Refined Diagnosis-Related Groups (APR-DRGs) system has adjusted the basic DRG structure by incorporating four severity of illness (SOI) levels, which are used for determining hospital payment. A comprehensive report of all...

Effect of Tube Voltage on Diagnostic Performance of Fractional Flow Reserve Derived From Coronary CT Angiography With Machine Learning: Results From the MACHINE Registry.

AJR. American journal of roentgenology
Coronary CT angiography (CCTA)-based methods allow noninvasive estimation of fractional flow reserve (cFFR), recently through use of a machine learning (ML) algorithm (cFFR). However, attenuation values vary according to the tube voltage used, and i...

Deep Learning for Diagnosis of Chronic Myocardial Infarction on Nonenhanced Cardiac Cine MRI.

Radiology
Background Renal impairment is common in patients with coronary artery disease and, if severe, late gadolinium enhancement (LGE) imaging for myocardial infarction (MI) evaluation cannot be performed. Purpose To develop a fully automatic framework for...

A Novel Method for Classifying Liver and Brain Tumors Using Convolutional Neural Networks, Discrete Wavelet Transform and Long Short-Term Memory Networks.

Sensors (Basel, Switzerland)
Rapid classification of tumors that are detected in the medical images is of great importance in the early diagnosis of the disease. In this paper, a new liver and brain tumor classification method is proposed by using the power of convolutional neur...

Assessment of Electrocardiogram Rhythms by GoogLeNet Deep Neural Network Architecture.

Journal of healthcare engineering
The aim of this study is to design GoogLeNet deep neural network architecture by expanding the kernel size of the inception layer and combining the convolution layers to classify the electrocardiogram (ECG) beats into a normal sinus rhythm, premature...