AI Medical Compendium Topic:
Severity of Illness Index

Clear Filters Showing 471 to 480 of 755 articles

Upper limb robot-assisted rehabilitation versus physical therapy on subacute stroke patients: A follow-up study.

Journal of bodywork and movement therapies
This study aims to analyse the long-term effects (6 months follow-up) of upper limb Robot-assisted Therapy (RT) compared to Traditional physical Therapy (TT), in subacute stroke patients. Although the literature on upper-limb rehabilitation with robo...

Neural networks for automatic scoring of arthritis disease activity on ultrasound images.

RMD open
BACKGROUND: The development of standardised methods for ultrasound (US) scanning and evaluation of synovitis activity by the OMERACT-EULAR Synovitis Scoring (OESS) system is a major step forward in the use of US in the diagnosis and monitoring of pat...

Feature-weighted survival learning machine for COPD failure prediction.

Artificial intelligence in medicine
Chronic obstructive pulmonary disease (COPD) yields a high rate of failures such as hospital readmission and death in the United States, Canada and worldwide. COPD failure imposes a significant social and economic burden on society, and predicting su...

Resting state connectivity best predicts alcohol use severity in moderate to heavy alcohol users.

NeuroImage. Clinical
BACKGROUND: In the United States, 13% of adults are estimated to have alcohol use disorder (AUD). Most studies examining the neurobiology of AUD treat individuals with this disorder as a homogeneous group; however, the theories of the neurocircuitry ...

Objective Relationship Between Sleep Apnea and Frequency of Snoring Assessed by Machine Learning.

Journal of clinical sleep medicine : JCSM : official publication of the American Academy of Sleep Medicine
STUDY OBJECTIVES: Snoring is perceived to be directly proportional to sleep apnea severity, especially obstructive sleep apnea (OSA), but this notion has not been thoroughly and objectively evaluated, despite its popularity in clinical practice. This...

DeepSOFA: A Continuous Acuity Score for Critically Ill Patients using Clinically Interpretable Deep Learning.

Scientific reports
Traditional methods for assessing illness severity and predicting in-hospital mortality among critically ill patients require time-consuming, error-prone calculations using static variable thresholds. These methods do not capitalize on the emerging a...

Water-fat separation and parameter mapping in cardiac MRI via deep learning with a convolutional neural network.

Journal of magnetic resonance imaging : JMRI
BACKGROUND: Water-fat separation is a postprocessing technique most commonly applied to multiple-gradient-echo magnetic resonance (MR) images to identify fat, provide images with fat suppression, and to measure fat tissue concentration. Recently, Num...

Development and Evaluation of a Machine Learning Model for the Early Identification of Patients at Risk for Sepsis.

Annals of emergency medicine
STUDY OBJECTIVE: The Third International Consensus Definitions (Sepsis-3) Task Force recommended the use of the quick Sequential [Sepsis-related] Organ Failure Assessment (qSOFA) score to screen patients for sepsis outside of the ICU. However, subseq...