AIMC Topic: Stroke Volume

Clear Filters Showing 31 to 40 of 205 articles

Prediction of Left Ventricle Pressure Indices Via a Machine Learning Approach Combining ECG, Pulse Oximetry, and Cardiac Sounds: a Preclinical Feasibility Study.

Journal of cardiovascular translational research
Heart failure (HF) is defined as the inability of the heart to meet body oxygen demand requiring an elevation in left ventricular filling pressures (LVP) to compensate. LVP increase can be assessed in the cardiac catheterization laboratory, but this ...

Multicenter validation study for automated left ventricular ejection fraction assessment using a handheld ultrasound with artificial intelligence.

Scientific reports
We sought to validate the ability of a novel handheld ultrasound device with an artificial intelligence program (AI-POCUS) that automatically assesses left ventricular ejection fraction (LVEF). AI-POCUS was used to prospectively scan 200 patients in ...

Point-of-care AI-enhanced novice echocardiography for screening heart failure (PANES-HF).

Scientific reports
The increasing prevalence of heart failure (HF) in ageing populations drives demand for echocardiography (echo). There is a worldwide shortage of trained sonographers and long waiting times for expert echo. We hypothesised that artificial intelligenc...

Tricuspid valve flow measurement using a deep learning framework for automated valve-tracking 2D phase contrast.

Magnetic resonance in medicine
PURPOSE: Tricuspid valve flow velocities are challenging to measure with cardiovascular MR, as the rapidly moving valvular plane prohibits direct flow evaluation, but they are vitally important to diastolic function evaluation. We developed an automa...

Fully Automatic Quantitative Measurement of Equilibrium Radionuclide Angiocardiography Using a Convolutional Neural Network.

Clinical nuclear medicine
PURPOSE: The aim of this study was to generate deep learning-based regions of interest (ROIs) from equilibrium radionuclide angiography datasets for left ventricular ejection fraction (LVEF) measurement.

Deep learning of left atrial structure and function provides link to atrial fibrillation risk.

Nature communications
Increased left atrial volume and decreased left atrial function have long been associated with atrial fibrillation. The availability of large-scale cardiac magnetic resonance imaging data paired with genetic data provides a unique opportunity to asse...

Cardiac function in a large animal model of myocardial infarction at 7 T: deep learning based automatic segmentation increases reproducibility.

Scientific reports
Cardiac magnetic resonance (CMR) imaging allows precise non-invasive quantification of cardiac function. It requires reliable image segmentation for myocardial tissue. Clinically used software usually offers automatic approaches for this step. These ...

Applying natural language processing to identify emergency department and observation encounters for worsening heart failure.

ESC heart failure
AIMS: Worsening heart failure (WHF) events occurring in non-inpatient settings are becoming increasingly recognized, with implications for prognostication. We evaluate the performance of a natural language processing (NLP)-based approach compared wit...

Prediction of heart failure patients with distinct left ventricular ejection fraction levels using circadian ECG features and machine learning.

PloS one
Heart failure (HF) encompasses a diverse clinical spectrum, including instances of transient HF or HF with recovered ejection fraction, alongside persistent cases. This dynamic condition exhibits a growing prevalence and entails substantial healthcar...