AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Thorax

Showing 161 to 170 of 220 articles

Clear Filters

Artificial intelligence applications for thoracic imaging.

European journal of radiology
Artificial intelligence is a hot topic in medical imaging. The development of deep learning methods and in particular the use of convolutional neural networks (CNNs), have led to substantial performance gain over the classic machine learning techniqu...

How many models/atlases are needed as priors for capturing anatomic population variations?

Medical image analysis
Many medical image processing and analysis operations can benefit a great deal from prior information encoded in the form of models/atlases to capture variations over a population in form, shape, anatomic layout, and image appearance of objects. Howe...

Synthesis of Electrocardiogram V-Lead Signals From Limb-Lead Measurement Using R-Peak Aligned Generative Adversarial Network.

IEEE journal of biomedical and health informatics
Recently, portable electrocardiogram (ECG) hardware devices have been developed using limb-lead measurements. However, portable ECGs provide insufficient ECG information because of limitations in the number of leads and measurement positions. Therefo...

Detecting Mistakes in CPR Training with Multimodal Data and Neural Networks.

Sensors (Basel, Switzerland)
This study investigated to what extent multimodal data can be used to detect mistakes during Cardiopulmonary Resuscitation (CPR) training. We complemented the Laerdal QCPR ResusciAnne manikin with the Multimodal Tutor for CPR, a multi-sensor system c...

Development of a deep neural network for generating synthetic dual-energy chest x-ray images with single x-ray exposure.

Physics in medicine and biology
Dual-energy chest radiography (DECR) is a medical imaging technology that can improve diagnostic accuracy. This technique can decompose single-energy chest radiography (SECR) images into separate bone- and soft tissue-only images. This can, however, ...

Domain Progressive 3D Residual Convolution Network to Improve Low-Dose CT Imaging.

IEEE transactions on medical imaging
The wide applications of X-ray computed tomography (CT) bring low-dose CT (LDCT) into a clinical prerequisite, but reducing the radiation exposure in CT often leads to significantly increased noise and artifacts, which might lower the judgment accura...

Comparison of Deep Learning Approaches for Multi-Label Chest X-Ray Classification.

Scientific reports
The increased availability of labeled X-ray image archives (e.g. ChestX-ray14 dataset) has triggered a growing interest in deep learning techniques. To provide better insight into the different approaches, and their applications to chest X-ray classi...

Efficient Deep Network Architectures for Fast Chest X-Ray Tuberculosis Screening and Visualization.

Scientific reports
Automated diagnosis of tuberculosis (TB) from chest X-Rays (CXR) has been tackled with either hand-crafted algorithms or machine learning approaches such as support vector machines (SVMs) and convolutional neural networks (CNNs). Most deep neural net...