AIMC Topic: Tumor Microenvironment

Clear Filters Showing 41 to 50 of 338 articles

Advances of artificial intelligence in clinical application and scientific research of neuro-oncology: Current knowledge and future perspectives.

Critical reviews in oncology/hematology
Brain tumors refer to the abnormal growths that occur within the brain's tissue, comprising both primary neoplasms and metastatic lesions. Timely detection, precise staging, suitable treatment, and standardized management are of significant clinical ...

Living Microalgae-Based Magnetic Microrobots for Calcium Overload and Photodynamic Synergetic Cancer Therapy.

Advanced healthcare materials
The combination of Ca overload and reactive oxygen species (ROS) production for cancer therapy offers a superior solution to the lack of specificity in traditional antitumor strategies. However, current therapeutic platforms for this strategy are pri...

Development of a tertiary lymphoid structure-based prognostic model for breast cancer: integrating single-cell sequencing and machine learning to enhance patient outcomes.

Frontiers in immunology
BACKGROUND: Breast cancer, a highly prevalent global cancer, poses significant challenges, especially in advanced stages. Prognostic models are crucial to enhance patient outcomes. Tertiary lymphoid structures (TLS) within the tumor microenvironment ...

Machine learning-derived prognostic signature integrating programmed cell death and mitochondrial function in renal clear cell carcinoma: identification of PIF1 as a novel target.

Cancer immunology, immunotherapy : CII
BACKGROUND: The pathogenesis and progression of renal cell carcinoma (RCC) involve complex programmed cell death (PCD) processes. As the powerhouse of the cell, mitochondria can influence cell death mechanisms. However, the prognostic significance of...

Using mathematical modelling and AI to improve delivery and efficacy of therapies in cancer.

Nature reviews. Cancer
Mathematical modelling has proven to be a valuable tool in predicting the delivery and efficacy of molecular, antibody-based, nano and cellular therapy in solid tumours. Mathematical models based on our understanding of the biological processes at su...

Multi-omics and single-cell analysis reveals machine learning-based pyrimidine metabolism-related signature in the prognosis of patients with lung adenocarcinoma.

International journal of medical sciences
Pyrimidine metabolism is a hallmark of tumor metabolic reprogramming, while its significance in the prognostic and therapeutic implications of patients with lung adenocarcinoma (LUAD) still remains unclear. In this study, an integrated framework of...

Integrating single-cell sequencing and machine learning to uncover the role of mitophagy in subtyping and prognosis of esophageal cancer.

Apoptosis : an international journal on programmed cell death
Globally, esophageal cancer stands as a prominent contributor to cancer-related fatalities, distinguished by its poor prognosis. Mitophagy has a significant impact on the process of cancer progression. This study investigated the prognostic significa...

Artificial intelligence in gastrointestinal cancer research: Image learning advances and applications.

Cancer letters
With the rapid advancement of artificial intelligence (AI) technologies, including deep learning, large language models, and neural networks, these methodologies are increasingly being developed and integrated into cancer research. Gastrointestinal t...

Machine learning-based integration reveals immunological heterogeneity and the clinical potential of T cell receptor (TCR) gene pattern in hepatocellular carcinoma.

Apoptosis : an international journal on programmed cell death
The T Cell Receptor (TCR) significantly contributes to tumor immunity, whereas the intricate interplay with the Hepatocellular Carcinoma (HCC) microenvironment and clinical significance remains largely unexplored. Here, we aimed to examine the functi...

Quantifying the tumour vasculature environment from CD-31 immunohistochemistry images of breast cancer using deep learning based semantic segmentation.

Breast cancer research : BCR
BACKGROUND: Tumour vascular density assessed from CD-31 immunohistochemistry (IHC) images has previously been shown to have prognostic value in breast cancer. Current methods to measure vascular density, however, are time-consuming, suffer from high ...