AI Medical Compendium Journal:
Tomography (Ann Arbor, Mich.)

Showing 1 to 10 of 68 articles

Deep Learning-Driven Abbreviated Shoulder MRI Protocols: Diagnostic Accuracy in Clinical Practice.

Tomography (Ann Arbor, Mich.)
BACKGROUND: Deep learning (DL) reconstruction techniques have shown promise in reducing MRI acquisition times while maintaining image quality. However, the impact of different acceleration factors on diagnostic accuracy in shoulder MRI remains unexpl...

Use of Open-Source Large Language Models for Automatic Synthesis of the Entire Imaging Medical Records of Patients: A Feasibility Study.

Tomography (Ann Arbor, Mich.)
BACKGROUND/OBJECTIVES: Reviewing the entire history of imaging exams of a single patient's records is an essential step in clinical practice, but it is time and resource consuming, with potential negative effects on workflow and on the quality of med...

Discussion of a Simple Method to Generate Descriptive Images Using Predictive ResNet Model Weights and Feature Maps for Recurrent Cervix Cancer.

Tomography (Ann Arbor, Mich.)
BACKGROUND: Predictive models like Residual Neural Networks (ResNets) can use Magnetic Resonance Imaging (MRI) data to identify cervix tumors likely to recur after radiotherapy (RT) with high accuracy. However, there persists a lack of insight into m...

Prediction of Chemotherapy Response in Locally Advanced Breast Cancer Patients at Pre-Treatment Using CT Textural Features and Machine Learning: Comparison of Feature Selection Methods.

Tomography (Ann Arbor, Mich.)
RATIONALE: Neoadjuvant chemotherapy (NAC) is a key element of treatment for locally advanced breast cancer (LABC). Predicting the response of NAC for patients with LABC before initiating treatment would be valuable to customize therapies and ensure t...

Deep Learning for Ultrasonographic Assessment of Temporomandibular Joint Morphology.

Tomography (Ann Arbor, Mich.)
BACKGROUND: Temporomandibular joint (TMJ) disorders are a significant cause of orofacial pain. Artificial intelligence (AI) has been successfully applied to other imaging modalities but remains underexplored in ultrasonographic evaluations of TMJ.

ADMM-TransNet: ADMM-Based Sparse-View CT Reconstruction Method Combining Convolution and Transformer Network.

Tomography (Ann Arbor, Mich.)
BACKGROUND: X-ray computed tomography (CT) imaging technology provides high-precision anatomical visualization of patients and has become a standard modality in clinical diagnostics. A widely adopted strategy to mitigate radiation exposure is sparse-...

Deep Learning-Based Tumor Segmentation of Murine Magnetic Resonance Images of Prostate Cancer Patient-Derived Xenografts.

Tomography (Ann Arbor, Mich.)
BACKGROUND/OBJECTIVE: Longitudinal in vivo studies of murine xenograft models are widely utilized in oncology to study cancer biology and develop therapies. Magnetic resonance imaging (MRI) of these tumors is an invaluable tool for monitoring tumor g...

Graph Neural Network Learning on the Pediatric Structural Connectome.

Tomography (Ann Arbor, Mich.)
PURPOSE: Sex classification is a major benchmark of previous work in learning on the structural connectome, a naturally occurring brain graph that has proven useful for studying cognitive function and impairment. While graph neural networks (GNNs), s...

Impact of Deep Learning 3D CT Super-Resolution on AI-Based Pulmonary Nodule Characterization.

Tomography (Ann Arbor, Mich.)
BACKGROUND/OBJECTIVES: Correct pulmonary nodule volumetry and categorization is paramount for accurate diagnosis in lung cancer screening programs. CT scanners with slice thicknesses of multiple millimetres are still common worldwide, and slice thick...

Dual-Stage AI Model for Enhanced CT Imaging: Precision Segmentation of Kidney and Tumors.

Tomography (Ann Arbor, Mich.)
OBJECTIVES: Accurate kidney and tumor segmentation of computed tomography (CT) scans is vital for diagnosis and treatment, but manual methods are time-consuming and inconsistent, highlighting the value of AI automation. This study develops a fully au...