AIMC Topic: Adult

Clear Filters Showing 1221 to 1230 of 14446 articles

Artificial intelligence models utilize lifestyle factors to predict dry eye related outcomes.

Scientific reports
The purpose of this study is to examine and interpret machine learning models that predict dry eye (DE)-related clinical signs, subjective symptoms, and clinician diagnoses by heavily weighting lifestyle factors in the predictions. Machine learning m...

Lipidomic analysis coupled with machine learning identifies unique urinary lipid signatures in patients with interstitial cystitis/bladder pain syndrome.

World journal of urology
PURPOSE: To identify biomarkers for diagnosis and classification of interstitial cystitis/bladder pain syndrome (IC/BPS) by urinary lipidomics coupled with machine learning.

Effect of Uncertainty-Aware AI Models on Pharmacists' Reaction Time and Decision-Making in a Web-Based Mock Medication Verification Task: Randomized Controlled Trial.

JMIR medical informatics
BACKGROUND: Artificial intelligence (AI)-based clinical decision support systems are increasingly used in health care. Uncertainty-aware AI presents the model's confidence in its decision alongside its prediction, whereas black-box AI only provides a...

Stigmatisation of gambling disorder in social media: a tailored deep learning approach for YouTube comments.

Harm reduction journal
BACKGROUND: The stigmatisation of gamblers, particularly those with a gambling disorder, and self-stigmatisation are considered substantial barriers to seeking help and treatment. To develop effective strategies to reduce the stigma associated with g...

Daily Automated Prediction of Delirium Risk in Hospitalized Patients: Model Development and Validation.

JMIR medical informatics
BACKGROUND: Delirium is common in hospitalized patients and is correlated with increased morbidity and mortality. Despite this, delirium is underdiagnosed, and many institutions do not have sufficient resources to consistently apply effective screeni...

Multi-modal multi-task deep neural networks for sleep disordered breathing assessment using cardiac and audio signals.

International journal of medical informatics
BACKGROUND AND OBJECTIVE: Sleep disordered breathing (SDB) is one of the most common sleep disorders and has short-term consequences for daytime functioning while being a risk factor for several conditions, such as cardiovascular disease. Polysomnogr...

Combined peritumoral radiomics and clinical features predict 12-month progression free survival in glioblastoma.

Journal of neuro-oncology
PURPOSE: Analyzing post-treatment MRIs from glioblastoma patients can be challenging due to similar radiological presentations of disease progression and treatment effects. Identifying radiomics features (RFs) revealing progressive glioblastoma can c...

Development and Validation an AI Model to Improve the Diagnosis of Deep Infiltrating Endometriosis for Junior Sonologists.

Ultrasound in medicine & biology
OBJECTIVE: This study aims to develop and validate an artificial intelligence (AI) model based on ultrasound (US) videos and images to improve the performance of junior sonologists in detecting deep infiltrating endometriosis (DE).

Performance and hypothetical clinical impact of an mNGS-based machine learning model for antimicrobial susceptibility prediction of five ESKAPEE bacteria.

Microbiology spectrum
UNLABELLED: Antimicrobial resistance is an escalating global health crisis, underscoring the urgent need for timely and targeted therapies to ensure effective clinical treatment. We developed a machine learning model based on metagenomic next-generat...

Assessing the association of multi-environmental chemical exposures on metabolic syndrome: A machine learning approach.

Environment international
Metabolic syndrome (MetS) is a major global public health concern due to its rising prevalence and association with increased risks of cardiovascular disease and type 2 diabetes. Emerging evidence suggests that environmental chemical exposures may pl...