AIMC Topic: Aged, 80 and over

Clear Filters Showing 271 to 280 of 3428 articles

Machine Learning-Based Prediction of Postoperative Pneumonia Among Super-Aged Patients With Hip Fracture.

Clinical interventions in aging
BACKGROUND: Hip fractures have become a significant health concern, particularly among super-aged patients, who were at a high risk of postoperative pneumonia due to their frailty and the presence of multiple comorbidities. This study aims to establi...

CSEPC: a deep learning framework for classifying small-sample multimodal medical image data in Alzheimer's disease.

BMC geriatrics
BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disorder that significantly impacts health care worldwide, particularly among the elderly population. The accurate classification of AD stages is essential for slowing disease progression an...

Linguistic cues for automatic assessment of Alzheimer's disease across languages.

Journal of Alzheimer's disease : JAD
BackgroundMost common forms of dementia, including Alzheimer's disease, are associated with alterations in spoken language.ObjectiveThis study explores the potential of a speech-based machine learning (ML) approach in estimating cognitive impairment,...

Preoperative clinical radiomics model based on deep learning in prognostic assessment of patients with gallbladder carcinoma.

BMC cancer
OBJECTIVE: We aimed to develop a preoperative clinical radiomics survival prediction model based on the radiomics features via deep learning to provide a reference basis for preoperative assessment and treatment decisions for patients with gallbladde...

Urban and rural disparities in stroke prediction using machine learning among Chinese older adults.

Scientific reports
Stroke is a significant health concern in China. Differences in stroke risk between rural and urban areas have been highlighted in prior research. However, there is a scarcity of studies on urban-rural differences in predicting stroke. This study aim...

Predicting 90-day risk of urinary tract infections following urostomy in bladder cancer patients using machine learning and explainability.

Scientific reports
This research aims to design and validate a machine learning model to predict the probability of urinary tract infections within 90 days post-urostomy in bladder cancer patients. Clinical and follow-up information from 317 patients who had urostomy p...

Real-World Insights Into Dementia Diagnosis Trajectory and Clinical Practice Patterns Unveiled by Natural Language Processing: Development and Usability Study.

JMIR aging
BACKGROUND: Understanding the dementia disease trajectory and clinical practice patterns in outpatient settings is vital for effective management. Knowledge about the path from initial memory loss complaints to dementia diagnosis remains limited.

A PET/CT-based 3D deep learning model for predicting spread through air spaces in stage I lung adenocarcinoma.

Clinical & translational oncology : official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico
PURPOSE: This study evaluates a three-dimensional (3D) deep learning (DL) model based on fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) for predicting the preoperative status of spread through air spa...

Deep Learning-Enhanced Ultra-high-resolution CT Imaging for Superior Temporal Bone Visualization.

Academic radiology
RATIONALE AND OBJECTIVES: This study assesses the image quality of temporal bone ultra-high-resolution (UHR) Computed tomography (CT) scans in adults and children using hybrid iterative reconstruction (HIR) and a novel, vendor-specific deep learning-...

Deep learning to quantify the pace of brain aging in relation to neurocognitive changes.

Proceedings of the National Academy of Sciences of the United States of America
Brain age (BA), distinct from chronological age (CA), can be estimated from MRIs to evaluate neuroanatomic aging in cognitively normal (CN) individuals. BA, however, is a cross-sectional measure that summarizes cumulative neuroanatomic aging since bi...