AIMC Topic: Aged, 80 and over

Clear Filters Showing 521 to 530 of 3430 articles

Effective Alzheimer's disease detection using enhanced Xception blending with snapshot ensemble.

Scientific reports
Alzheimer's disease (AD), a prevalent neurodegenerative disorder, leads to progressive dementia, which impairs decision-making, problem-solving, and communication. While there is no cure, early detection can facilitate treatments to slow its progress...

Deep Learning Based Detection of Large Vessel Occlusions in Acute Ischemic Stroke Using High-Resolution Photon Counting Computed Tomography and Conventional Multidetector Computed Tomography.

Clinical neuroradiology
PURPOSE: Deep learning (DL) methods for detecting large vessel occlusion (LVO) in acute ischemic stroke (AIS) show promise, but the effect of computed tomography angiography (CTA) image quality on DL performance is unclear. Our study investigates the...

Deep-learning assessment of hippocampal magnetic susceptibility in Alzheimer's disease.

Journal of Alzheimer's disease : JAD
BACKGROUND: Quantitative susceptibility mapping (QSM) is pivotal for analyzing neurodegenerative diseases. However, accurate hippocampal segmentation remains a challenge.

Identification and cognitive function prediction of Alzheimer's disease based on multivariate pattern analysis of hippocampal volumes.

Journal of Alzheimer's disease : JAD
BACKGROUND: Alzheimer's disease (AD) is strongly associated with slowly progressive hippocampal atrophy. Elucidating the relationships between local morphometric changes and disease status for early diagnosis could be aided by machine learning algori...

Graph Convolutional Network for AD and MCI Diagnosis Utilizing Peripheral DNA Methylation: Réseau de neurones en graphes pour le diagnostic de la MA et du TCL à l'aide de la méthylation de l'ADN périphérique.

Canadian journal of psychiatry. Revue canadienne de psychiatrie
OBJECTIVE: Blood DNA methylation (DNAm) alterations have been widely reported in the onset and progression of mild cognitive impairment (MCI) and Alzheimer's disease (AD); however, DNAm is underutilized as a diagnostic biomarker for these diseases. W...

Social Robots and Sensors for Enhanced Aging at Home: Mixed Methods Study With a Focus on Mobility and Socioeconomic Factors.

JMIR aging
BACKGROUND: Population aging affects society, with a profound impact on daily activities for those of a low socioeconomic status and with motor impairments. Social assistive robots (SARs) and monitoring technologies can improve older adults' well-bei...

Machine learning based on event-related oscillations of working memory differentiates between preclinical Alzheimer's disease and normal aging.

Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology
OBJECTIVE: To apply machine learning approaches on EEG event-related oscillations (ERO) to discriminate preclinical Alzheimer's disease (AD) from age- and sex-matched controls.

Predictive Factors Driving Positive Awake Test in Carotid Endarterectomy Using Machine Learning.

Annals of vascular surgery
BACKGROUND: Positive neurologic awake testing during the carotid cross-clamping may be present in around 8% of patients undergoing carotid endarterectomy (CEA). The present work aimed to assess the accuracy of an artificial intelligence (AI)-powered ...

Factors inducing cutaneous adverse reactions in cancer patients treated with PD-1 and PD-L1 inhibitors: a machine-learning algorithm approach.

Immunopharmacology and immunotoxicology
BACKGROUND: Immune checkpoint inhibitors (ICIs) show promise in cancer treatment but can lead to immune-related adverse events (irAEs), notably affecting the skin. Understanding the factors behind these skin reactions is crucial for effective managem...