AIMC Topic: Aged

Clear Filters Showing 1441 to 1450 of 12579 articles

A quantitatively interpretable model for Alzheimer's disease prediction using deep counterfactuals.

NeuroImage
Deep learning (DL) for predicting Alzheimer's disease (AD) has provided timely intervention in disease progression yet still demands attentive interpretability to explain how their DL models make definitive decisions. Counterfactual reasoning has rec...

Improving reliability of movement assessment in Parkinson's disease using computer vision-based automated severity estimation.

Journal of Parkinson's disease
BackgroundClinical assessments of motor symptoms rely on observations and subjective judgments against standardized scales, leading to variability due to confounders. Improving inter-rater agreement is essential for effective disease management.Objec...

Functional MRI-based machine learning strategy for prediction of postoperative delirium in cardiac surgery patients: A secondary analysis of a prospective observational study.

Journal of clinical anesthesia
STUDY OBJECTIVE: Delirium is a common complication after cardiac surgery and is associated with poor prognosis. An effective delirium prediction model could identify high-risk patients who might benefit from targeted prevention strategies. We introdu...

Prediction of cognitive conversion within the Alzheimer's disease continuum using deep learning.

Alzheimer's research & therapy
BACKGROUND: Early diagnosis and accurate prognosis of cognitive decline in Alzheimer's disease (AD) is important to timely assignment to optimal treatment modes. We aimed to develop a deep learning model to predict cognitive conversion to guide re-as...

A risk prediction model for venous thromboembolism in hospitalized patients with thoracic trauma: a machine learning, national multicenter retrospective study.

World journal of emergency surgery : WJES
BACKGROUND: Early treatment and prevention are the keys to reducing the mortality of VTE in patients with thoracic trauma. This study aimed to develop and validate an automatic prediction model based on machine learning for VTE risk screening in pati...

Predicting low density lipoprotein cholesterol target attainment using machine learning in patients with coronary artery disease receiving moderate-dose statin therapy.

Scientific reports
Low-density lipoprotein cholesterol (LDL-C) is an important factor in the development of cardiovascular disease, making its management a key aspect of cardiovascular health. While high-dose statin therapy is often recommended for LDL-C reduction, car...

Large Language Models-Supported Thrombectomy Decision-Making in Acute Ischemic Stroke Based on Radiology Reports: Feasibility Qualitative Study.

Journal of medical Internet research
BACKGROUND: The latest advancement of artificial intelligence (AI) is generative pretrained transformer large language models (LLMs). They have been trained on massive amounts of text, enabling humanlike and semantical responses to text-based inputs ...

Use of machine learning algorithms to construct models of symptom burden cluster risk in breast cancer patients undergoing chemotherapy.

Supportive care in cancer : official journal of the Multinational Association of Supportive Care in Cancer
PURPOSE: To develop models using different machine learning algorithms to predict high-risk symptom burden clusters in breast cancer patients undergoing chemotherapy, and to determine an optimal model.

Artificial intelligence for opportunistic osteoporosis screening with a Hounsfield Unit in chronic obstructive pulmonary disease patients.

Journal of clinical densitometry : the official journal of the International Society for Clinical Densitometry
INTRODUCTION: To investigate the accuracy of an artificial intelligence (AI) prototype in determining bone mineral density (BMD) in chronic obstructive pulmonary disease (COPD) patients using chest computed tomography (CT) scans.

Diagnostic of fatty liver using radiomics and deep learning models on non-contrast abdominal CT.

PloS one
PURPOSE: This study aims to explore the potential of non-contrast abdominal CT radiomics and deep learning models in accurately diagnosing fatty liver.