AIMC Topic: Aged

Clear Filters Showing 2011 to 2020 of 12887 articles

Evaluating a clinically available artificial intelligence model for intracranial aneurysm detection: a multi-reader study and algorithmic audit.

Neuroradiology
PURPOSE: We aimed to validate a clinically available artificial intelligence (AI) model to assist general radiologists in the detection of intracranial aneurysm (IA) in a multi-reader multi-case (MRMC) study, and to explore its performance in routine...

A novel hybrid deep learning framework based on biplanar X-ray radiography images for bone density prediction and classification.

Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA
UNLABELLED: This study utilized deep learning for bone mineral density (BMD) prediction and classification using biplanar X-ray radiography (BPX) images from Huashan Hospital Medical Checkup Center. Results showed high accuracy and strong correlation...

Screening of Aβ and phosphorylated tau status in the cerebrospinal fluid through machine learning analysis of portable electroencephalography data.

Scientific reports
Diagnosing Alzheimer's disease (AD) through pathological markers is typically costly and invasive. This study aims to find a noninvasive, cost-effective method using portable electroencephalography (EEG) to detect changes in AD-related biomarkers in ...

Development of a LASSO machine learning algorithm-based model for postoperative delirium prediction in hepatectomy patients.

BMC surgery
OBJECTIVE: The objective of this study was to develop and validate a clinically applicable nomogram for predicting the risk of delirium following hepatectomy.

Development of an interpretable machine learning model based on CT radiomics for the prediction of post acute pancreatitis diabetes mellitus.

Scientific reports
This study sought to establish and validate an interpretable CT radiomics-based machine learning model capable of predicting post-acute pancreatitis diabetes mellitus (PPDM-A), providing clinicians with an effective predictive tool to aid patient man...

Exploring the subtle and novel renal pathological changes in diabetic nephropathy using clustering analysis with deep learning.

Scientific reports
To decrease the number of chronic kidney disease (CKD), early diagnosis of diabetic kidney disease is required. We performed invariant information clustering (IIC)-based clustering on glomerular images obtained from nephrectomized kidneys of patients...

Automated analysis of spoken language differentiates multiple system atrophy from Parkinson's disease.

Journal of neurology
BACKGROUND AND OBJECTIVES: Patients with synucleinopathies such as multiple system atrophy (MSA) and Parkinson's disease (PD) frequently display speech and language abnormalities. We explore the diagnostic potential of automated linguistic analysis o...

Patch-Wise Deep Learning Method for Intracranial Stenosis and Aneurysm Detection-the Tromsø Study.

Neuroinformatics
Intracranial atherosclerotic stenosis (ICAS) and intracranial aneurysms are prevalent conditions in the cerebrovascular system. ICAS causes a narrowing of the arterial lumen, thereby restricting blood flow, while aneurysms involve the ballooning of b...

Deep learning of noncontrast CT for fast prediction of hemorrhagic transformation of acute ischemic stroke: a multicenter study.

European radiology experimental
BACKGROUND: Hemorrhagic transformation (HT) is a complication of reperfusion therapy following acute ischemic stroke (AIS). We aimed to develop and validate a model for predicting HT and its subtypes with poor prognosis-parenchymal hemorrhage (PH), i...