AIMC Topic: Aged

Clear Filters Showing 3141 to 3150 of 12959 articles

Comparing ensemble learning algorithms and severity of illness scoring systems in cardiac intensive care units: a retrospective study.

Einstein (Sao Paulo, Brazil)
BACKGROUND: Beatriz Nistal-Nuño designed a machine learning system type of ensemble learning for patients undergoing cardiac surgery and intensive care unit cardiology patients, based on sequences of cardiovascular physiological measurements and othe...

An Ensemble Learning Algorithm for Cognitive Evaluation by an Immersive Virtual Reality Supermarket.

IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
Early screening for Mild Cognitive Impairment (MCI) is crucial in delaying cognitive deterioration and treating dementia. Conventional neuropsychological tests, commonly used for MCI detection, often lack ecological validity due to their simplistic a...

A support vector machine-based approach to guide the selection of a pseudo-reference region for brain PET quantification.

Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism
A Support Vector Machine (SVM) based approach was developed to identify a pseudo-reference region for brain PET scans with the aim of reducing interscan and intersubject variability. By training a binary linear SVM classifier with PET datasets from t...

Machine learning and explainable artificial intelligence to predict pathologic stage in men with localized prostate cancer.

The Prostate
BACKGROUND: Though several nomograms exist, machine learning (ML) approaches might improve prediction of pathologic stage in patients with prostate cancer. To develop ML models to predict pathologic stage that outperform existing nomograms that use r...

Prediction of Social Engagement in Long-Term Care Homes by Sex: A Population-Based Analysis Using Machine Learning.

Journal of applied gerontology : the official journal of the Southern Gerontological Society
The objective of this study was to use population-based clinical assessment data to build and evaluate machine-learning models for predicting social engagement among female and male residents of long-term care (LTC) homes. Routine clinical assessment...

A machine learning algorithm for creating isotropic 3D aortic segmentations from routine cardiac MR localizers.

Magnetic resonance imaging
BACKGROUND: The identification and measurement of aortic aneurysms is an important clinical problem. While specialized high-resolution 3D CMR sequences allow detailed aortic assessment, they are time-consuming which limits their use in screening rout...

Avoidable biopsies? Validating artificial intelligence-based decision support software in indeterminate thyroid nodules.

Surgery
BACKGROUND: Multiple artificial intelligence (AI) systems have been approved to risk-stratify thyroid nodules through sonographic characterization. We sought to validate the ability of one such AI system, Koios DS (Koios Medical, Chicago, IL), to aid...

Machine learning interpretability methods to characterize the importance of hematologic biomarkers in prognosticating patients with suspected infection.

Computers in biology and medicine
OBJECTIVE: To evaluate the effectiveness of Monocyte Distribution Width (MDW) in predicting sepsis outcomes in emergency department (ED) patients compared to other hematologic parameters and vital signs, and to determine whether routine parameters co...

Haves and have-nots: socioeconomic position improves accuracy of machine learning algorithms for predicting high-impact chronic pain.

Pain
Lower socioeconomic position (SEP) is associated with increased risk of developing chronic pain, experiencing more severe pain, and suffering greater pain-related disability. However, SEP is a multidimensional construct; there is a dearth of research...

Artificial Intelligence-Based Assessment of Preoperative Body Composition Is Associated With Early Complications After Radical Cystectomy.

The Journal of urology
PURPOSE: We aimed to use a validated artificial intelligence (AI) algorithm to extract muscle and adipose areas from CT images before radical cystectomy (RCx) and then correlate these measures with 90-day post-RCx complications.