AIMC Topic: Aged

Clear Filters Showing 3391 to 3400 of 13197 articles

Machine Learning Algorithm to Predict Atrial Fibrillation Using Serial 12-Lead ECGs Based on Left Atrial Remodeling.

Journal of the American Heart Association
BACKGROUND: We hypothesized that analysis of serial ECGs could predict new-onset atrial fibrillation (AF) more accurately than analysis of a single ECG by detecting the subtle cardiac remodeling that occurs immediately before AF occurrence. Our aim i...

Predicting Individual Treatment Effects to Determine Duration of Dual Antiplatelet Therapy After Stent Implantation.

Journal of the American Heart Association
BACKGROUND: After coronary stent implantation, prolonged dual antiplatelet therapy (DAPT) increases bleeding risk, requiring personalization of DAPT duration. The aim of this study was to develop and validate a machine learning model to predict optim...

Deep Learning Virtual Contrast-Enhanced T1 Mapping for Contrast-Free Myocardial Extracellular Volume Assessment.

Journal of the American Heart Association
BACKGROUND: The acquisition of contrast-enhanced T1 maps to calculate extracellular volume (ECV) requires contrast agent administration and is time consuming. This study investigates generative adversarial networks for contrast-free, virtual extracel...

Personalized prediction of immunotherapy response in lung cancer patients using advanced radiomics and deep learning.

Cancer imaging : the official publication of the International Cancer Imaging Society
BACKGROUND: Lung cancer (LC) is a leading cause of cancer-related mortality, and immunotherapy (IO) has shown promise in treating advanced-stage LC. However, identifying patients likely to benefit from IO and monitoring treatment response remains cha...

Study on medical dispute prediction model and its clinical-application effectiveness based on machine learning.

BMC medical informatics and decision making
BACKGROUND: Medical dispute is a global public health issue, which has been garnering increasing attention. In this study, we used machine learning (ML) method to establish a dispute prediction model and explored the clinical-application efficiency o...

Machine-learning-based models for the optimization of post-cervical spinal laminoplasty outpatient follow-up schedules.

BMC medical informatics and decision making
BACKGROUND: Patients undergo regular clinical follow-up after laminoplasty for cervical myelopathy. However, those whose symptoms significantly improve and remain stable do not need to conform to a regular follow-up schedule. Based on the 1-year post...

Precision HER2: a comprehensive AI system for accurate and consistent evaluation of HER2 expression in invasive breast Cancer.

BMC cancer
BACKGROUND: With the development of novel anti-HER2 targeted drugs, such as ADCs, it has become increasingly important to accurately interpret HER2 expression in breast cancer. Previous studies have demonstrated high intra-observer and inter-observer...

Development and application of an artificial intelligence-assisted endoscopy system for diagnosis of Helicobacter pylori infection: a multicenter randomized controlled study.

BMC gastroenterology
BACKGROUND: The early diagnosis and treatment of Heliobacter pylori (H.pylori) gastrointestinal infection provide significant benefits to patients. We constructed a convolutional neural network (CNN) model based on an endoscopic system to diagnose H....

Sex estimation using skull silhouette images from postmortem computed tomography by deep learning.

Scientific reports
Prompt personal identification is required during disasters that can result in many casualties. To rapidly estimate sex based on skull structure, this study applied deep learning using two-dimensional silhouette images, obtained from head postmortem ...

Using random forest and biomarkers for differentiating COVID-19 and Mycoplasma pneumoniae infections.

Scientific reports
The COVID-19 pandemic has underscored the critical need for precise diagnostic methods to distinguish between similar respiratory infections, such as COVID-19 and Mycoplasma pneumoniae (MP). Identifying key biomarkers and utilizing machine learning t...