AIMC Topic: Aged

Clear Filters Showing 381 to 390 of 12425 articles

Forecasting optimal treatments in relapsed/refractory mature T- and NK-cell lymphomas: A global PETAL Consortium study.

British journal of haematology
There is no standard of care in relapsed/refractory T-cell/natural killer-cell lymphomas. Patients often cycle through cytotoxic chemotherapy (CC), epigenetic modifiers (EM) or small molecule inhibitors (SMI) empirically. Ideal therapy at each line r...

The Impact of Telepresence Robots on Family Caregivers and Residents in Long-Term Care.

International journal of environmental research and public health
Telepresence robots can enhance social connection and support person-centered care in long-term care (LTC) homes. This study evaluates their impact in facilitating virtual visits between family caregivers and older residents in Canadian LTC homes. Te...

Machine Learning Multimodal Model for Delirium Risk Stratification.

JAMA network open
IMPORTANCE: Automating the identification of risk for developing hospital delirium with models that use machine learning (ML) could facilitate more rapid prevention, identification, and treatment of delirium. However, there are very few reports on th...

A deep learning algorithm for automated adrenal gland segmentation on non-contrast CT images.

BMC medical imaging
BACKGROUND: The adrenal glands are small retroperitoneal organs, few reference standards exist for adrenal CT measurements in clinical practice. This study aims to develop a deep learning (DL) model for automated adrenal gland segmentation on non-con...

Global burden of non-melanoma skin cancers among older adults: a comprehensive analysis using machine learning approaches.

Scientific reports
Non-melanoma skin cancers (NMSCs), including basal cell carcinoma (BCC) and squamous cell carcinoma (SCC), have shown significant global increases in burden, particularly among older adults, with wide regional, gender, and socio-demographic dispariti...

Identification of relevant features using SEQENS to improve supervised machine learning models predicting AML treatment outcome.

BMC medical informatics and decision making
BACKGROUND AND OBJECTIVE: This study has two main objectives. First, to evaluate a feature selection methodology based on SEQENS, an algorithm for identifying relevant variables. Second, to validate machine learning models that predict the risk of co...

Predicting Transvaginal Surgical Mesh Exposure Outcomes Using an Integrated Dataset of Blood Cytokine Levels and Medical Record Data: Machine Learning Approach.

JMIR formative research
BACKGROUND: Transvaginal insertion of polypropylene mesh was extensively used in surgical procedures to treat pelvic organ prolapse (POP) due to its cost-efficiency and durability. However, studies have reported a high rate of complications, includin...

Deep Learning Model of Primary Tumor and Metastatic Cervical Lymph Nodes From CT for Outcome Predictions in Oropharyngeal Cancer.

JAMA network open
IMPORTANCE: Primary tumor (PT) and metastatic cervical lymph node (LN) characteristics are highly associated with oropharyngeal squamous cell carcinoma (OPSCC) prognosis. Currently, there is a lack of studies to combine imaging characteristics of bot...

Development and validation of a machine learning-based risk model for metastatic disease in nmCRPC patients: a tumor marker prognostic study.

International journal of surgery (London, England)
BACKGROUND: Nonmetastatic castration-resistant prostate cancer (nmCRPC) is a clinical challenge due to the high progression rate to metastasis and mortality. To date, no prognostic model has been developed to predict the metastatic probability for nm...