AIMC Topic: Aged

Clear Filters Showing 4041 to 4050 of 13244 articles

Ensemble machine learning to predict futile recanalization after mechanical thrombectomy based on non-contrast CT imaging.

Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association
OBJECTIVES: Despite successful recanalization after Mechanical Thrombectomy (MT), approximately 25 % of patients with Acute Ischemic Stroke (AIS) due to Large Vessel Occlusion (LVO) show unfavorable clinical outcomes, namely Futile Recanalization (FR...

Derivation and external validation of mass spectrometry-based proteomic model using machine learning algorithms to predict plaque rupture in patients with acute coronary syndrome.

Clinica chimica acta; international journal of clinical chemistry
BACKGROUND: A poor prognosis is associated with atherosclerotic plaque rupture (PR) despite after conventional therapy for patients with acute coronary syndrome (ACS). Timely identification of PR improves the risk stratification and prognosis of ACS ...

Combined High-Throughput Proteomics and Random Forest Machine-Learning Approach Differentiates and Classifies Metabolic, Immune, Signaling and ECM Intra-Tumor Heterogeneity of Colorectal Cancer.

Cells
Colorectal cancer (CRC) is a frequent, worldwide tumor described for its huge complexity, including inter-/intra-heterogeneity and tumor microenvironment (TME) variability. Intra-tumor heterogeneity and its connections with metabolic reprogramming an...

Sex and population differences in the cardiometabolic continuum: a machine learning study using the UK Biobank and ELSA-Brasil cohorts.

BMC public health
BACKGROUND: The temporal relationships across cardiometabolic diseases (CMDs) were recently conceptualized as the cardiometabolic continuum (CMC), sequence of cardiovascular events that stem from gene-environmental interactions, unhealthy lifestyle i...

A Deep Learning-Based Framework for Predicting Intracerebral Hematoma Expansion Using Head Non-contrast CT Scan.

Academic radiology
RATIONALE AND OBJECTIVES: Hematoma expansion (HE) in intracerebral hemorrhage (ICH) is a critical factor affecting patient outcomes, yet effective clinical tools for predicting HE are currently lacking. We aim to develop a fully automated framework b...

Preoperative Prediction of Axillary Lymph Node Metastasis in Patients With Breast Cancer Through Multimodal Deep Learning Based on Ultrasound and Magnetic Resonance Imaging Images.

Academic radiology
RATIONALE AND OBJECTIVES: Deep learning can enhance the performance of multimodal image analysis, which is known for its noninvasive attributes and complementary efficacy, in predicting axillary lymph node (ALN) metastasis. Therefore, we established ...

Automated detection and classification of mandibular fractures on multislice spiral computed tomography using modified convolutional neural networks.

Oral surgery, oral medicine, oral pathology and oral radiology
OBJECTIVE: To evaluate the performance of convolutional neural networks (CNNs) for the automated detection and classification of mandibular fractures on multislice spiral computed tomography (MSCT).

Identifying Factors Associated With Fast Visual Field Progression in Patients With Ocular Hypertension Based on Unsupervised Machine Learning.

Journal of glaucoma
PRCIS: We developed unsupervised machine learning models to identify different subtypes of patients with ocular hypertension in terms of visual field (VF) progression and discovered 4 subtypes with different trends of VF worsening. We then identified...

A two-stage ensemble learning based prediction and grading model for PD-1/PD-L1 inhibitor-related cardiac adverse events: A multicenter retrospective study.

Computer methods and programs in biomedicine
BACKGROUND: Immune-related cardiac adverse events (ircAEs) caused by programmed cell death protein-1 (PD-1) and programmed death-ligand-1 (PD-L1) inhibitors can lead to fulminant and even fatal consequences. This study aims to develop a prediction an...

A Fully Automated Pipeline Using Swin Transformers for Deep Learning-Based Blood Segmentation on Head Computed Tomography Scans After Aneurysmal Subarachnoid Hemorrhage.

World neurosurgery
BACKGROUND: Accurate volumetric assessment of spontaneous aneurysmal subarachnoid hemorrhage (aSAH) is a labor-intensive task performed with current manual and semiautomatic methods that might be relevant for its clinical and prognostic implications....