AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Biomarkers, Tumor

Showing 191 to 200 of 979 articles

Clear Filters

Pinpointing the integration of artificial intelligence in liver cancer immune microenvironment.

Frontiers in immunology
Liver cancer remains one of the most formidable challenges in modern medicine, characterized by its high incidence and mortality rate. Emerging evidence underscores the critical roles of the immune microenvironment in tumor initiation, development, p...

High density of TCF1+ stem-like tumor-infiltrating lymphocytes is associated with favorable disease-specific survival in NSCLC.

Frontiers in immunology
INTRODUCTION: Tumor-infiltrating lymphocytes are both prognostic and predictive biomarkers for immunotherapy response. However, less is known about the survival benefits oftheir subpopulations.

Machine-learning derived identification of prognostic signature to forecast head and neck squamous cell carcinoma prognosis and drug response.

Frontiers in immunology
INTRODUCTION: Head and neck squamous cell carcinoma (HNSCC), a highly heterogeneous malignancy is often associated with unfavorable prognosis. Due to its unique anatomical position and the absence of effective early inspection methods, surgical inter...

Combined inflammation-related biomarkers and clinicopathological features for the prognosis of stage II/III colorectal cancer by machine learning.

BMC cancer
BACKGROUND: Inflammation-related biomarkers, such as systemic inflammation score (SIS) and neutrophil-lymphocyte ratio (NLR), are associated with colorectal cancer prognosis. However, the combined role of SIS, NLR, and clinicopathological factors in ...

Advancing miRNA cancer research through artificial intelligence: from biomarker discovery to therapeutic targeting.

Medical oncology (Northwood, London, England)
MicroRNAs (miRNAs), a class of small non-coding RNAs, play a vital role in regulating gene expression at the post-transcriptional level. Their discovery has profoundly impacted therapeutic strategies, particularly in cancer treatment, where RNA thera...

Targeting liver cancer stem cells: the prognostic significance of MRPL17 in immunotherapy response.

Frontiers in immunology
BACKGROUND: Liver hepatocellular carcinoma (LIHC) ranks as the foremost cause of cancer-related deaths worldwide, and its early detection poses considerable challenges. Current prognostic indicators, including alpha-fetoprotein, have notable limitati...

Identification and validation of the nicotine metabolism-related signature of bladder cancer by bioinformatics and machine learning.

Frontiers in immunology
BACKGROUND: Several studies indicate that smoking is one of the major risk factors for bladder cancer. Nicotine and its metabolites, the main components of tobacco, have been found to be strongly linked to the occurrence and progression of bladder ca...

Machine learning and multi-omics characterization of SLC2A1 as a prognostic factor in hepatocellular carcinoma: SLC2A1 is a prognostic factor in HCC.

Gene
Hepatocellular carcinoma (HCC) is characterized by high incidence, significant mortality, and marked heterogeneity, making accurate molecular subtyping essential for effective treatment. Using multi-omics data from HCC patients, we applied diverse cl...

Real-World and Clinical Trial Validation of a Deep Learning Radiomic Biomarker for PD-(L)1 Immune Checkpoint Inhibitor Response in Advanced Non-Small Cell Lung Cancer.

JCO clinical cancer informatics
PURPOSE: This study developed and validated a novel deep learning radiomic biomarker to estimate response to immune checkpoint inhibitor (ICI) therapy in advanced non-small cell lung cancer (NSCLC) using real-world data (RWD) and clinical trial data.