AIMC Topic: Biomarkers

Clear Filters Showing 291 to 300 of 1805 articles

From Genes to Metabolites: HSP90B1's Role in Alzheimer's Disease and Potential for Therapeutic Intervention.

Neuromolecular medicine
Alzheimer's disease (AD) is a prototypical neurodegenerative disorder, predominantly affecting individuals in the presenile and elderly populations, with an etiology that remains elusive. This investigation aimed to elucidate the alterations in anoik...

Effects of data transformation and model selection on feature importance in microbiome classification data.

Microbiome
BACKGROUND: Accurate classification of host phenotypes from microbiome data is crucial for advancing microbiome-based therapies, with machine learning offering effective solutions. However, the complexity of the gut microbiome, data sparsity, composi...

Development of machine learning models for diagnostic biomarker identification and immune cell infiltration analysis in PCOS.

Journal of ovarian research
BACKGROUND: Polycystic ovary syndrome (PCOS) is a common endocrine disorder affecting women of reproductive age. It is characterized by symptoms such as hyperandrogenemia, oligo or anovulation and polycystic ovarian, significantly impacting quality o...

Common biomarkers of idiopathic pulmonary fibrosis and systemic sclerosis based on WGCNA and machine learning.

Scientific reports
Interstitial lung disease (ILD) is known to be a major complication of systemic sclerosis (SSc) and a leading cause of death in SSc patients. As the most common type of ILD, the pathogenesis of idiopathic pulmonary fibrosis (IPF) has not been fully e...

Metabolic reprogramming and macrophage expansion define ACPA-negative rheumatoid arthritis: insights from single-cell RNA sequencing.

Frontiers in immunology
BACKGROUND: Anti-citrullinated peptide antibodies (ACPA)-negative (ACPA-) rheumatoid arthritis (RA) presents significant diagnostic and therapeutic challenges due to the absence of specific biomarkers, underscoring the need to elucidate its distincti...

Selective diagnostics of Amyotrophic Lateral Sclerosis, Alzheimer's and Parkinson's Diseases with machine learning and miRNA.

Metabolic brain disease
The diagnosis of neurological diseases can be expensive, invasive, and inaccurate, as it is often difficult to distinguish between different types of diseases with similar motor symptoms. However, the dysregulation of miRNAs can be used to create a r...

Fibrosis and inflammatory activity diagnosis of chronic hepatitis C based on extreme learning machine.

Scientific reports
The traditional diagnosis of chronic hepatitis C usually relies on liver biopsy. Diagnosing chronic hepatitis C based on serum indices provides a non-invasive way to determine the stage of chronic hepatitis C without liver biopsy. In this paper, we p...

Utilizing integrated bioinformatics and machine learning approaches to elucidate biomarkers linking sepsis to purine metabolism-associated genes.

Scientific reports
Sepsis, characterized as a systemic inflammatory response triggered by pathogen invasion, represents a continuum that may progress from mild systemic infection to severe sepsis, potentially culminating in septic shock and multiple organ dysfunction s...

Artificial intelligence-based cardiovascular/stroke risk stratification in women affected by autoimmune disorders: a narrative survey.

Rheumatology international
Women are disproportionately affected by chronic autoimmune diseases (AD) like systemic lupus erythematosus (SLE), scleroderma, rheumatoid arthritis (RA), and Sjögren's syndrome. Traditional evaluations often underestimate the associated cardiovascul...

Identifying proteomic prognostic markers for Alzheimer's disease with survival machine learning: The Framingham Heart Study.

The journal of prevention of Alzheimer's disease
BACKGROUND: Protein abundance levels, sensitive to both physiological changes and external interventions, are useful for assessing the Alzheimer's disease (AD) risk and treatment efficacy. However, identifying proteomic prognostic markers for AD is c...