AIMC Topic: Case-Control Studies

Clear Filters Showing 181 to 190 of 871 articles

Predictive modeling of lower extreme deep vein thrombosis following radical gastrectomy for gastric cancer: based on multiple machine learning methods.

Scientific reports
Postoperative venous thromboembolic events (VTEs), such as lower extremity deep vein thrombosis (DVT), are major risk factors for gastric cancer (GC) patients following radical gastrectomy. Accurately predicting and managing these risks is crucial fo...

Comprehensive assessment of machine learning methods for diagnosing gastrointestinal diseases through whole metagenome sequencing data.

Gut microbes
The gut microbiome, linked significantly to host diseases, offers potential for disease diagnosis through machine learning (ML) pipelines. These pipelines, crucial in modeling diseases using high-dimensional microbiome data, involve selecting profile...

Plasma immune profiling combined with machine learning contributes to diagnosis and prognosis of active pulmonary tuberculosis.

Emerging microbes & infections
Tuberculosis (TB) remains one of the deadliest chronic infectious diseases globally. Early diagnosis not only prevents the spread of TB but also ensures effective treatment. However, the absence of non-sputum-based diagnostic tests often leads to del...

Predicting Alzheimer's disease from cognitive footprints in mid and late life: How much can register data and machine learning help?

International journal of medical informatics
BACKGROUND: Real-world data with decades-long medical records are increasingly available alongside the growing adoption of machine learning in healthcare research. We evaluated the performance of machine learning models in predicting the risk of Alzh...

Evaluation of Serum Visfatin as a Biomarker of Lupus Nephritis in Egyptian Patients with Systemic Lupus Erythematosus.

Saudi journal of kidney diseases and transplantation : an official publication of the Saudi Center for Organ Transplantation, Saudi Arabia
One of the most significant consequences of systemic lupus erythematosus (SLE) is lupus nephritis (LN). Visfatin, an adipokine that is significantly expressed in visceral fat and is a marker of endothelial dysfunction in chronic kidney disease, has m...

Rapid detection of lung cancer based on serum Raman spectroscopy and a support vector machine: a case-control study.

BMC cancer
BACKGROUND: Early screening and detection of lung cancer is essential for the diagnosis and prognosis of the disease. In this paper, we investigated the feasibility of serum Raman spectroscopy for rapid lung cancer screening.

Application of Proteomics and Machine Learning Methods to Study the Pathogenesis of Diabetic Nephropathy and Screen Urinary Biomarkers.

Journal of proteome research
Diabetic nephropathy (DN) has become the main cause of end-stage renal disease worldwide, causing significant health problems. Early diagnosis of the disease is quite inadequate. To screen urine biomarkers of DN and explore its potential mechanism, t...

Rapid diagnosis of celiac disease based on plasma Raman spectroscopy combined with deep learning.

Scientific reports
Celiac Disease (CD) is a primary malabsorption syndrome resulting from the interplay of genetic, immune, and dietary factors. CD negatively impacts daily activities and may lead to conditions such as osteoporosis, malignancies in the small intestine,...

Exploration and verification a 13-gene diagnostic framework for ulcerative colitis across multiple platforms via machine learning algorithms.

Scientific reports
Ulcerative colitis (UC) is a chronic inflammatory bowel disease with intricate pathogenesis and varied presentation. Accurate diagnostic tools are imperative to detect and manage UC. This study sought to construct a robust diagnostic model using gene...

A machine learning tool for identifying patients with newly diagnosed diabetes in primary care.

Primary care diabetes
BACKGROUND AND AIM: It is crucial to identify a diabetes diagnosis early. Create a predictive model utilizing machine learning (ML) to identify new cases of diabetes in primary health care (PHC).