AIMC Topic: Case-Control Studies

Clear Filters Showing 401 to 410 of 872 articles

Computer-aided diagnosis of pectus excavatum using CT images and deep learning methods.

Scientific reports
Pectus excavatum (PE) is one of the most common chest wall defects. Accurate assessment of PE deformities is critical for effective surgical intervention. Index-based evaluations have become the standard for objectively estimating PE, however, these ...

Automated estimation of echocardiogram image quality in hospitalized patients.

The international journal of cardiovascular imaging
We developed a machine learning model for efficient analysis of echocardiographic image quality in hospitalized patients. This study applied a machine learning model for automated transthoracic echo (TTE) image quality scoring in three inpatient grou...

Artificial intelligence for the detection of vertebral fractures on plain spinal radiography.

Scientific reports
Vertebral fractures (VFs) cause serious problems, such as substantial functional loss and a high mortality rate, and a delayed diagnosis may further worsen the prognosis. Plain thoracolumbar radiography (PTLR) is an essential method for the evaluatio...

Neuromorphic on-chip recognition of saliva samples of COPD and healthy controls using memristive devices.

Scientific reports
Chronic Obstructive Pulmonary Disease (COPD) is a life-threatening lung disease, affecting millions of people worldwide. Implementation of Machine Learning (ML) techniques is crucial for the effective management of COPD in home-care environments. How...

Comparing machine learning with case-control models to identify confirmed dengue cases.

PLoS neglected tropical diseases
In recent decades, the global incidence of dengue has increased. Affected countries have responded with more effective surveillance strategies to detect outbreaks early, monitor the trends, and implement prevention and control measures. We have appli...

Circulating Neutrophil Extracellular Traps Signature for Identifying Organ Involvement and Response to Glucocorticoid in Adult-Onset Still's Disease: A Machine Learning Study.

Frontiers in immunology
Adult-onset Still's disease (AOSD) is an autoinflammatory disease with multisystem involvement. Early identification of patients with severe complications and those refractory to glucocorticoid is crucial to improve therapeutic strategy in AOSD. Exag...

Artificial intelligence automates and augments baseline impedance measurements from pH-impedance studies in gastroesophageal reflux disease.

Journal of gastroenterology
BACKGROUND: Artificial intelligence (AI) has potential to streamline interpretation of pH-impedance studies. In this exploratory observational cohort study, we determined feasibility of automated AI extraction of baseline impedance (AIBI) and evaluat...

Host variables confound gut microbiota studies of human disease.

Nature
Low concordance between studies that examine the role of microbiota in human diseases is a pervasive challenge that limits the capacity to identify causal relationships between host-associated microorganisms and pathology. The risk of obtaining false...

Predictive diagnosis of chronic obstructive pulmonary disease using serum metabolic biomarkers and least-squares support vector machine.

Journal of clinical laboratory analysis
OBJECTIVE: Development of biofluid-based biomarkers is attractive for the diagnosis of chronic obstructive pulmonary disease (COPD) but still lacking. Thus, here we aimed to identify serum metabolic biomarkers for the diagnosis of COPD.

Trabeculae microstructure parameters serve as effective predictors for marginal bone loss of dental implant in the mandible.

Scientific reports
Marginal bone loss (MBL) is one of the leading causes of dental implant failure. This study aimed to investigate the feasibility of machine learning (ML) algorithms based on trabeculae microstructure parameters to predict the occurrence of severe MBL...