AIMC Topic: Case-Control Studies

Clear Filters Showing 41 to 50 of 869 articles

Exploring the role of breastfeeding, antibiotics, and indoor environments in preschool children atopic dermatitis through machine learning and hygiene hypothesis.

Scientific reports
The increasing global incidence of atopic dermatitis (AD) in children, especially in Western industrialized nations, has attracted considerable attention. The hygiene hypothesis, which posits that early pathogen exposure is crucial for immune system ...

Rapid, non-invasive breath analysis for enhancing detection of silicosis using mass spectrometry and interpretable machine learning.

Journal of breath research
Occupational lung diseases, such as silicosis, are a significant global health concern, especially with increasing exposure to engineered stone dust. Early detection of silicosis is helpful for preventing disease progression, but existing diagnostic ...

Circulating lncRNAs as biomarkers for severe dengue using a machine learning approach.

The Journal of infection
OBJECTIVES: Dengue virus (DENV) infection is a significant global health concern, causing severe morbidity and mortality. While many cases present as a mild febrile illness, some progress to life-threatening severe dengue (SD). Early intervention is ...

Patellar tilt calculation utilizing artificial intelligence on CT knee imaging.

The Knee
BACKGROUND: In the diagnosis of patellar instability, three-dimensional (3D) imaging enables measurement of a wide range of metrics. However, measuring these metrics can be time-consuming and prone to error due to conducting 2D measurements on 3D obj...

Machine learning-derived diagnostic model of epithelial ovarian cancer based on gut microbiome signatures.

Journal of translational medicine
BACKGROUND: Prior studies have elucidated that alterations in gut microbiota are associated with a spectrum of tumors and metabolic disorders. However, the diagnostic value of gut microbiota in epithelial ovarian cancer remains insufficiently investi...

Predicting pregnancy at the first year following metabolic-bariatric surgery: development and validation of machine learning models.

Surgical endoscopy
BACKGROUND: Metabolic-bariatric surgery (MBS) is the last effective way to lose weight whom around half of the patients are women of reproductive age. It is recommended an interval of 12 months between surgery and pregnancy to optimize weight loss an...

Trans-ancestral rare variant association study with machine learning-based phenotyping for metabolic dysfunction-associated steatotic liver disease.

Genome biology
BACKGROUND: Genome-wide association studies (GWAS) have identified common variants associated with metabolic dysfunction-associated steatotic liver disease (MASLD). However, rare coding variant studies have been limited by phenotyping challenges and ...

Hand X-rays findings and a disease screening for Turner syndrome through deep learning model.

BMC pediatrics
BACKGROUND: Turner syndrome (TS) is one of the important causes of short stature in girls, but there are cases of misdiagnosis and missed diagnosis in clinical practice. Our aim is to analyze the hand skeletal characteristics of TS patients and estab...