International journal of environmental research and public health
Apr 11, 2019
The aim of this study was to demonstrate the usefulness of artificial neural networks in Alzheimer disease diagnosis (AD) using data of brain single photon emission computed tomography (SPECT). The results were compared with discriminant analysis. Th...
Schizophrenia is a common mental disorder with high heritability. It is genetically complex and to date more than a hundred risk loci have been identified. Association of environmental factors and schizophrenia has also been reported, while epigeneti...
BACKGROUND: The development of standardised methods for ultrasound (US) scanning and evaluation of synovitis activity by the OMERACT-EULAR Synovitis Scoring (OESS) system is a major step forward in the use of US in the diagnosis and monitoring of pat...
The application of deep learning to neuroimaging big data will help develop computer-aided diagnosis of neurological diseases. Pattern recognition using deep learning can extract features of neuroimaging signals unique to various neurological disease...
OBJECTIVE: We aim to study to what extent conventional and deep-learning-based T relaxometry patterns are able to distinguish between knees with and without radiographic osteoarthritis (OA).
OBJECTIVE: Major depression disorder (MDD) is one of the most prevalent mental disorders worldwide. Diagnosing depression in the early stage is crucial to treatment process. However, due to depression's comorbid nature and the subjectivity in diagnos...
OBJECTIVES: Juvenile idiopathic arthritis (JIA) is the most common class of childhood rheumatic diseases, with distinct disease subsets that may have diverging pathophysiological origins. Both adaptive and innate immune processes have been proposed a...
The purpose of this study is to better understand the role of interleukin 35 (IL35) in esophageal carcinoma by comparing the mRNA level in Barrett's esophageal mucosa and in matched normal squamous mucosa and to understand how the diagnosis model wor...
International journal of neural systems
Mar 3, 2019
Over the last years convolutional neural networks (CNNs) have shown remarkable results in different image classification tasks, including medical imaging. One area that has been less explored with CNNs is Positron Emission Tomography (PET). Fluorodeo...
OBJECTIVES: To develop a U-Net-based deep learning approach (U-DL) for bladder segmentation in computed tomography urography (CTU) as a part of a computer-assisted bladder cancer detection and treatment response assessment pipeline.