AIMC Topic: Cell Line, Tumor

Clear Filters Showing 141 to 150 of 508 articles

Development of fucoidan/polyethyleneimine based sorafenib-loaded self-assembled nanoparticles with machine learning and DoE-ANN implementation: Optimization, characterization, and in-vitro assessment for the anticancer drug delivery.

International journal of biological macromolecules
This study aims to develop sorafenib-loaded self-assembled nanoparticles (SFB-SANPs) using the combined approach of artificial neural network and design of experiments (ANN-DoE) and to compare it with other machine learning (ML) models. The central c...

Utilizing convolutional neural networks for discriminating cancer and stromal cells in three-dimensional cell culture images with nuclei counterstain.

Journal of biomedical optics
SIGNIFICANCE: Accurate cell segmentation and classification in three-dimensional (3D) images are vital for studying live cell behavior and drug responses in 3D tissue culture. Evaluating diverse cell populations in 3D cell culture over time necessita...

Machine learning enabled classification of lung cancer cell lines co-cultured with fibroblasts with lightweight convolutional neural network for initial diagnosis.

Journal of biomedical science
BACKGROUND: Identification of lung cancer subtypes is critical for successful treatment in patients, especially those in advanced stages. Many advanced and personal treatments require knowledge of specific mutations, as well as up- and down-regulatio...

MMFSyn: A Multimodal Deep Learning Model for Predicting Anticancer Synergistic Drug Combination Effect.

Biomolecules
Combination therapy aims to synergistically enhance efficacy or reduce toxic side effects and has widely been used in clinical practice. However, with the rapid increase in the types of drug combinations, identifying the synergistic relationships bet...

Machine learning developed a macrophage signature for predicting prognosis, immune infiltration and immunotherapy features in head and neck squamous cell carcinoma.

Scientific reports
Macrophages played an important role in the progression and treatment of head and neck squamous cell carcinoma (HNSCC). We employed weighted gene co-expression network analysis (WGCNA) to identify macrophage-related genes (MRGs) and classify patients...

is a novel marker for bladder cancer prognosis: evidence based on experimental studies, machine learning and single-cell sequencing.

Frontiers in immunology
BACKGROUND: Bladder cancer, a highly fatal disease, poses a significant threat to patients. Positioned at 19q13.2-13.3, LIG1, one of the four DNA ligases in mammalian cells, is frequently deleted in tumour cells of diverse origins. Despite this, the ...

Machine learning analysis of oxidative stress-related phenotypes for specific gene screening in ovarian cancer.

Environmental toxicology
BACKGROUND: Oxidative stress serves a crucial role in tumor development. However, the relationship between ovarian cancer and oxidative stress remains unknown. We aimed to create an oxidative stress-related prognostic signature to enhance the prognos...

Automated Bio-AFM Generation of Large Mechanome Data Set and Their Analysis by Machine Learning to Classify Cancerous Cell Lines.

ACS applied materials & interfaces
Mechanobiological measurements have the potential to discriminate healthy cells from pathological cells. However, a technology frequently used to measure these properties, i.e., atomic force microscopy (AFM), suffers from its low output and lack of s...

Accurate Identification of Cancer Cells in Complex Pre-Clinical Models Using a Deep-Learning Neural Network: A Transfection-Free Approach.

Advanced biology
3D co-cultures are key tools for in vitro biomedical research as they recapitulate more closely the in vivo environment while allowing a tighter control on the culture's composition and experimental conditions. The limited technologies available for ...