OBJECTIVE: To evaluate combinations of candidate biomarkers to develop a multiplexed prediction model for identifying the viability and location of an early pregnancy. In this study, we assessed 24 biomarkers with multiple machine learning-based meth...
The diagnosis of inherited retinal degeneration (IRD) is challenging owing to its phenotypic and genotypic complexity. Clinical information is important before a genetic diagnosis is made. Metabolomics studies the entire picture of bioproducts, which...
INTRODUCTION: Differentiating Progressive Supranuclear Palsy (PSP) from Parkinson's Disease (PD) may be clinically challenging. In this study, we explored the performance of machine learning models based on MR imaging and blood molecular biomarkers i...
BACKGROUND: To develop a deep learning(DL) model utilizing ultrasound images, and evaluate its efficacy in distinguishing between benign and malignant parotid tumors (PTs), as well as its practicality in assisting clinicians with accurate diagnosis.
While there is data assessing the test performance of artificial intelligence (AI) chatbots, including the Generative Pre-trained Transformer 4.0 (GPT 4) chatbot (ChatGPT 4.0), there is scarce data on its diagnostic accuracy of clinical cases. We ass...
Endocrine practice : official journal of the American College of Endocrinology and the American Association of Clinical Endocrinologists
Apr 22, 2024
OBJECTIVE: To assess the diagnostic value of combining plasma steroid profiling with machine learning (ML) in differentiating between mild autonomous cortisol secretion (MACS) and nonfunctioning adenoma (NFA) in patients with adrenal incidentalomas.
RATIONALE AND OBJECTIVES: To investigate the effectiveness of machine learning-based clinical, radiomics, and combined models in differentiating idiopathic granulomatous mastitis (IGM) from malignancy, both presenting as non-mass enhancement (NME) le...
Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association
Apr 16, 2024
OBJECTIVES: We set out to develop a machine learning model capable of distinguishing patients presenting with ischemic stroke from a healthy cohort of subjects. The model relies on a 3-min resting electroencephalogram (EEG) recording from which featu...
Journal of the European Academy of Dermatology and Venereology : JEADV
Apr 15, 2024
BACKGROUND: Lupus erythematosus (LE) is a spectrum of autoimmune diseases. Due to the complexity of cutaneous LE (CLE), clinical skin image-based artificial intelligence is still experiencing difficulties in distinguishing subtypes of LE.
RATIONALE AND OBJECTIVES: To systematically evaluate the application value of radiomics and deep learning (DL) in the differential diagnosis of benign and malignant soft tissue tumors (STTs).