AI Medical Compendium Topic:
Diagnosis, Differential

Clear Filters Showing 491 to 500 of 692 articles

Predictive markers for Parkinson's disease using deep neural nets on neuromelanin sensitive MRI.

NeuroImage. Clinical
Neuromelanin sensitive magnetic resonance imaging (NMS-MRI) has been crucial in identifying abnormalities in the substantia nigra pars compacta (SNc) in Parkinson's disease (PD) as PD is characterized by loss of dopaminergic neurons in the SNc. Curre...

Influence of segmentation margin on machine learning-based high-dimensional quantitative CT texture analysis: a reproducibility study on renal clear cell carcinomas.

European radiology
OBJECTIVE: To determine the possible influence of segmentation margin on each step (feature reproducibility, selection, and classification) of the machine learning (ML)-based high-dimensional quantitative computed tomography (CT) texture analysis (qC...

Differentiating kidney stones from phleboliths in unenhanced low-dose computed tomography using radiomics and machine learning.

European radiology
OBJECTIVES: Distinguishing between kidney stones and phleboliths can constitute a diagnostic challenge in patients undergoing unenhanced low-dose CT (LDCT) for acute flank pain. We sought to investigate the accuracy of radiomics and a machine-learnin...

A Comparative Texture Analysis Based on NECT and CECT Images to Differentiate Lung Adenocarcinoma from Squamous Cell Carcinoma.

Journal of medical systems
The purpose of the study was to compare the texture based discriminative performances between non-contrast enhanced computed tomography (NECT) and contrast-enhanced computed tomography (CECT) images in differentiating lung adenocarcinoma (ADC) from s...

Machine Learning to Differentiate T2-Weighted Hyperintense Uterine Leiomyomas from Uterine Sarcomas by Utilizing Multiparametric Magnetic Resonance Quantitative Imaging Features.

Academic radiology
RATIONALE AND OBJECTIVE: Uterine leiomyomas with high signal intensity on T2-weighted imaging (T2WI) can be difficult to distinguish from sarcomas. This study assessed the feasibility of using machine learning to differentiate uterine sarcomas from l...

Automatic thyroid nodule recognition and diagnosis in ultrasound imaging with the YOLOv2 neural network.

World journal of surgical oncology
BACKGROUND: In this study, images of 2450 benign thyroid nodules and 2557 malignant thyroid nodules were collected and labeled, and an automatic image recognition and diagnosis system was established by deep learning using the YOLOv2 neural network. ...