AIMC Topic: DNA Methylation

Clear Filters Showing 121 to 130 of 254 articles

Analyses of child cardiometabolic phenotype following assisted reproductive technologies using a pragmatic trial emulation approach.

Nature communications
Assisted reproductive technologies (ART) are increasingly used, however little is known about the long-term health of ART-conceived offspring. Weak selection of comparison groups and poorly characterized mechanisms impede current understanding. In a ...

Predicting drug sensitivity of cancer cells based on DNA methylation levels.

PloS one
Cancer cell lines, which are cell cultures derived from tumor samples, represent one of the least expensive and most studied preclinical models for drug development. Accurately predicting drug responses for a given cell line based on molecular featur...

A deep learning approach to automate whole-genome prediction of diverse epigenomic modifications in plants.

The New phytologist
Epigenetic modifications function in gene transcription, RNA metabolism, and other biological processes. However, multiple factors currently limit the scientific utility of epigenomic datasets generated for plants. Here, using deep-learning approache...

Prediction model for malignant pulmonary nodules based on cfMeDIP-seq and machine learning.

Cancer science
Cell-free methylated DNA immunoprecipitation and high-throughput sequencing (cfMeDIP-seq) is a new bisulfite-free technique, which can detect the whole-genome methylation of blood cell-free DNA (cfDNA). Using this technique, we identified differentia...

Attention-based multi-label neural networks for integrated prediction and interpretation of twelve widely occurring RNA modifications.

Nature communications
Recent studies suggest that epi-transcriptome regulation via post-transcriptional RNA modifications is vital for all RNA types. Precise identification of RNA modification sites is essential for understanding the functions and regulatory mechanisms of...

Construction and Validation of a Lung Cancer Diagnostic Model Based on 6-Gene Methylation Frequency in Blood, Clinical Features, and Serum Tumor Markers.

Computational and mathematical methods in medicine
Lung cancer has a high mortality rate. Promoting early diagnosis and screening of lung cancer is the most effective way to enhance the survival rate of lung cancer patients. Through computer technology, a comprehensive evaluation of genetic testing r...

Ultrasensitive detection of circulating tumour DNA via deep methylation sequencing aided by machine learning.

Nature biomedical engineering
The low abundance of circulating tumour DNA (ctDNA) in plasma samples makes the analysis of ctDNA biomarkers for the detection or monitoring of early-stage cancers challenging. Here we show that deep methylation sequencing aided by a machine-learning...

i4mC-EL: Identifying DNA N4-Methylcytosine Sites in the Mouse Genome Using Ensemble Learning.

BioMed research international
As one of important epigenetic modifications, DNA N4-methylcytosine (4mC) plays a crucial role in controlling gene replication, expression, cell cycle, DNA replication, and differentiation. The accurate identification of 4mC sites is necessary to und...

A convolution based computational approach towards DNA N6-methyladenine site identification and motif extraction in rice genome.

Scientific reports
DNA N6-methylation (6mA) in Adenine nucleotide is a post replication modification responsible for many biological functions. Automated and accurate computational methods can help to identify 6mA sites in long genomes saving significant time and money...