AIMC Topic:
Female

Clear Filters Showing 1321 to 1330 of 24115 articles

Deep learning-based breast MRI for predicting axillary lymph node metastasis: a systematic review and meta-analysis.

Cancer imaging : the official publication of the International Cancer Imaging Society
BACKGROUND: To perform a systematic review and meta-analysis that assesses the diagnostic performance of deep learning algorithms applied to breast MRI for predicting axillary lymph nodes metastases in patients of breast cancer.

Harness machine learning for multiple prognoses prediction in sepsis patients: evidence from the MIMIC-IV database.

BMC medical informatics and decision making
BACKGROUND: Sepsis, a severe systemic response to infection, frequently results in adverse outcomes, underscoring the urgency for prompt and accurate prognostic tools. Machine learning methods such as logistic regression, random forests, and CatBoost...

Effectiveness and clinical impact of using deep learning for first-trimester fetal ultrasound image quality auditing.

BMC pregnancy and childbirth
BACKGROUND: Regular auditing of ultrasound images is required to maintain quality; however, manual auditing is time-consuming and can be inconsistent. We therefore aimed to develop and validate an artificial intelligence-based image quality audit (AI...

Gd-EOB-DTPA-enhanced MRI radiomics and deep learning models to predict microvascular invasion in hepatocellular carcinoma: a multicenter study.

BMC medical imaging
BACKGROUND: Microvascular invasion (MVI) is an important risk factor for early postoperative recurrence of hepatocellular carcinoma (HCC). Based on gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance ...

Integration of epigenomic and genomic data to predict residual feed intake and the feed conversion ratio in dairy sheep via machine learning algorithms.

BMC genomics
BACKGROUND: Feed efficiency (FE) is an essential trait in livestock species because of the constant demand to increase the productivity and sustainability of livestock production systems. A better understanding of the biological mechanisms associated...

Comparing machine learning models for osteoporosis prediction in Tibetan middle aged and elderly women.

Scientific reports
The aim of this study was to establish the optimal prediction model by comparing the prediction effect of 6 kinds of prediction models containing biochemical indexes on the risk of osteoporosis in middle-aged and elderly women in Tibet. This study ad...

Detection of antibodies in suspected autoimmune encephalitis diseases using machine learning.

Scientific reports
In our study, we aim to predict the antibody serostatus of patients with suspected autoimmune encephalitis (AE) using machine learning based on pre-contrast T2-weighted MR images acquired at symptom onset. A confirmation of seropositivity is of great...

Machine learning models for pancreatic cancer diagnosis based on microbiome markers from serum extracellular vesicles.

Scientific reports
Pancreatic cancer (PC) is a fatal disease with an extremely low 5-year survival rate, mainly because of its poor detection rate in early stages. Given emerging evidence of the relationship between microbiota composition and diseases, this study aims ...

People are poorly equipped to detect AI-powered voice clones.

Scientific reports
As generative artificial intelligence (AI) continues its ballistic trajectory, everything from text to audio, image, and video generation continues to improve at mimicking human-generated content. Through a series of perceptual studies, we report on ...

Integrating deep learning with ECG, heart rate variability and demographic data for improved detection of atrial fibrillation.

Open heart
BACKGROUND: Atrial fibrillation (AF) is a common but often undiagnosed condition, increasing the risk of stroke and heart failure. Early detection is crucial, yet traditional methods struggle with AF's transient nature. This study investigates how au...