AIMC Topic:
Female

Clear Filters Showing 1521 to 1530 of 24668 articles

Robust vs. Non-robust radiomic features: the quest for optimal machine learning models using phantom and clinical studies.

Cancer imaging : the official publication of the International Cancer Imaging Society
PURPOSE: This study aimed to select robust features against lung motion in a phantom study and use them as input to feature selection algorithms and machine learning classifiers in a clinical study to predict the lymphovascular invasion (LVI) of non-...

An interpretable machine learning model based on computed tomography radiomics for predicting programmed death ligand 1 expression status in gastric cancer.

Cancer imaging : the official publication of the International Cancer Imaging Society
BACKGROUND: Programmed death ligand 1 (PD-L1) expression status, closely related to immunotherapy outcomes, is a reliable biomarker for screening patients who may benefit from immunotherapy. Here, we developed and validated an interpretable machine l...

Modifiable risk factors of vaccine hesitancy: insights from a mixed methods multiple population study combining machine learning and thematic analysis during the COVID-19 pandemic.

BMC medicine
BACKGROUND: Vaccine hesitancy, the delay in acceptance or reluctance to vaccinate, ranks among the top threats to global health. Identifying modifiable factors contributing to vaccine hesitancy is crucial for developing targeted interventions to incr...

Predicting total healthcare demand using machine learning: separate and combined analysis of predisposing, enabling, and need factors.

BMC health services research
OBJECTIVE: Predicting healthcare demand is essential for effective resource allocation and planning. This study applies Andersen's Behavioral Model of Health Services Use, focusing on predisposing, enabling, and need factors, using data from the 2022...

Deep learning radiomics for the prediction of epidermal growth factor receptor mutation status based on MRI in brain metastasis from lung adenocarcinoma patients.

BMC cancer
BACKGROUND: Early and accurate identification of epidermal growth factor receptor (EGFR) mutation status in non-small cell lung cancer (NSCLC) patients with brain metastases is critical for guiding targeted therapy. This study aimed to develop a deep...

Development and validation of machine learning models for predicting extubation failure in patients undergoing cardiac surgery: a retrospective study.

Scientific reports
Patients with multiple comorbidities and those undergoing complex cardiac surgery may experience extubation failure and reintubation. The aim of this study was to establish an extubation prediction model using explainable machine learning and identif...

Investigating the increase in the specialized performance of athletes using artificial neural network (ANN) exercises.

Scientific reports
Badminton, a dynamic and fast-paced racket sport, demands a unique combination of physical, technical, and cognitive abilities from its players. This study investigates the impact of a tailored core strength training program on the specialized perfor...

Mapping variants in thyroid hormone transporter MCT8 to disease severity by genomic, phenotypic, functional, structural and deep learning integration.

Nature communications
Predicting and quantifying phenotypic consequences of genetic variants in rare disorders is a major challenge, particularly pertinent for 'actionable' genes such as thyroid hormone transporter MCT8 (encoded by the X-linked SLC16A2 gene), where loss-o...

Machine learning analysis of integrated ABP and PPG signals towards early detection of coronary artery disease.

Scientific reports
Every year, Coronary Artery Disease (CAD) claims lives of over a million people. CAD occurs when the coronary arteries, responsible for supplying oxygenated blood to the heart, get occluded due to plaque deposits on their inner walls. The most critic...

Artificial intelligence for weight estimation in paediatric emergency care.

BMJ paediatrics open
OBJECTIVE: To develop and validate a paediatric weight estimation model adapted to the characteristics of the Spanish population as an alternative to currently extended methods.