AIMC Topic: Follow-Up Studies

Clear Filters Showing 71 to 80 of 750 articles

Obesity prediction: Novel machine learning insights into waist circumference accuracy.

Diabetes & metabolic syndrome
AIMS: This study aims to enhance the precision of obesity risk assessments by improving the accuracy of waist circumference predictions using machine learning techniques.

Artificial intelligence-driven automated lung sizing from chest radiographs.

American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons
Lung size measurements play an important role in transplantation, as optimal donor-recipient size matching is necessary to ensure the best possible outcome. Although several strategies for size matching are currently used, all have limitations, and n...

Recruitment in Appalachian, Rural and Older Adult Populations in an Artificial Intelligence World: Study Using Human-Mediated Follow-Up.

JMIR formative research
BACKGROUND: Participant recruitment in rural and hard-to-reach (HTR) populations can present unique challenges. These challenges are further exacerbated by the need for low-cost recruiting, which often leads to use of web-based recruitment methods (e...

Prediction of 90 day readmission in heart failure with preserved ejection fraction by interpretable machine learning.

ESC heart failure
AIMS: Certain critical risk factors of heart failure with preserved ejection fraction (HFpEF) patients were significantly different from those of heart failure with reduced ejection fraction (HFrEF) patients, resulting in the limitations of existing ...

Unsupervised machine learning to identify subphenotypes among cardiac intensive care unit patients with heart failure.

ESC heart failure
AIMS: Hospitalized patients with heart failure (HF) are a heterogeneous population, with multiple phenotypes proposed. Prior studies have not examined the biological phenotypes of critically ill patients with HF admitted to the contemporary cardiac i...

Trajectory on postpartum depression of Chinese women and the risk prediction models: A machine-learning based three-wave follow-up research.

Journal of affective disorders
BACKGROUND: Our study delves into postpartum depression (PPD) extending observation up to six months postpartum, addressing the gap in long-term follow-ups and uncover critical intervention points.

Predicting the trajectory of non-suicidal self-injury among adolescents.

Journal of child psychology and psychiatry, and allied disciplines
BACKGROUND: Non-suicidal self-injury (NSSI) is common among adolescents receiving inpatient psychiatric treatment and the months post-discharge is a high-risk period for self-injurious behavior. Thus, identifying predictors that shape the course of p...

Identifying Factors Associated With Fast Visual Field Progression in Patients With Ocular Hypertension Based on Unsupervised Machine Learning.

Journal of glaucoma
PRCIS: We developed unsupervised machine learning models to identify different subtypes of patients with ocular hypertension in terms of visual field (VF) progression and discovered 4 subtypes with different trends of VF worsening. We then identified...