AIMC Topic: Gene Expression Regulation, Neoplastic

Clear Filters Showing 91 to 100 of 583 articles

Unveiling the role of PANoptosis-related genes in breast cancer: an integrated study by multi-omics analysis and machine learning algorithms.

Breast cancer research and treatment
BACKGROUND: The heterogeneity of breast cancer (BC) necessitates the identification of novel subtypes and prognostic models to enhance patient stratification and treatment strategies. This study aims to identify novel BC subtypes based on PANoptosis-...

Machine learning-based lactate-related genes signature predicts clinical outcomes and unveils novel therapeutic targets in esophageal squamous cell carcinoma.

Cancer letters
Esophageal squamous cell carcinoma (ESCC), a predominant subtype of esophageal cancer, typically presents with poor prognosis. Lactate is a crucial metabolite in cancer and significantly impacts tumor biology. Here, we aimed to construct a lactate-re...

Integrating mitochondrial and lysosomal gene analysis for breast cancer prognosis using machine learning.

Scientific reports
The impact of mitochondrial and lysosomal co-dysfunction on breast cancer patient outcomes is unclear. The objective of this study is to develop a predictive machine learning (ML) model utilizing mitochondrial and lysosomal co-regulators in order to ...

Deep learning based analysis of G3BP1 protein expression to predict the prognosis of nasopharyngeal carcinoma.

PloS one
BACKGROUND: Ras-GTPase-activating protein (GAP)-binding protein 1 (G3BP1) emerges as a pivotal oncogenic gene across various malignancies, notably including nasopharyngeal carcinoma (NPC). The use of automated image analysis tools for immunohistochem...

Multiomic machine learning on lactylation for molecular typing and prognosis of lung adenocarcinoma.

Scientific reports
To integrate machine learning and multiomic data on lactylation-related genes (LRGs) for molecular typing and prognosis prediction in lung adenocarcinoma (LUAD). LRG mRNA and long non-coding RNA transcriptomes, epigenetic methylation data, and somati...

Cellular Senescence in Hepatocellular Carcinoma: Immune Microenvironment Insights via Machine Learning and In Vitro Experiments.

International journal of molecular sciences
Hepatocellular carcinoma (HCC), a leading liver tumor globally, is influenced by diverse risk factors. Cellular senescence, marked by permanent cell cycle arrest, plays a crucial role in cancer biology, but its markers and roles in the HCC immune mic...

Biologically relevant integration of transcriptomics profiles from cancer cell lines, patient-derived xenografts, and clinical tumors using deep learning.

Science advances
Cell lines and patient-derived xenografts are essential to cancer research; however, the results derived from such models often lack clinical translatability, as they do not fully recapitulate the complex cancer biology. Identifying preclinical model...

Epigenetic profiling for prognostic stratification and personalized therapy in breast cancer.

Frontiers in immunology
BACKGROUND: The rising incidence of breast cancer and its heterogeneity necessitate precise tools for predicting patient prognosis and tailoring personalized treatments. Epigenetic changes play a critical role in breast cancer progression and therapy...

Construction of an anaplastic thyroid cancer stratification signature to guide immune therapy selection and validation of the pivotal gene HLF through experiments.

Frontiers in immunology
INTRODUCTION: While most thyroid cancer patients have a favorable prognosis, anaplastic thyroid carcinoma (ATC) remains a particularly aggressive form with a median survival time of just five months. Conventional therapies offer limited benefits for ...

Integrated multi-omics analysis identifies a machine learning-derived signature for predicting prognosis and therapeutic vulnerability in clear cell renal cell carcinoma.

Life sciences
AIMS: Clear cell renal cell carcinoma (ccRCC) shows considerable variation within and between tumors, presents varying treatment responses among patients, possibly due to molecular distinctions. This study utilized a multi-center and multi-omics anal...