AIMC Topic: Gene Expression Regulation

Clear Filters Showing 21 to 30 of 287 articles

Construction of a deep learning model and identification of the pivotal characteristics of FGF7- and MGST1- positive fibroblasts in heart failure post-myocardial infarction.

International journal of biological macromolecules
Dysregulation of fibroblast function is closely associated with the occurrence of heart failure after myocardial infarction (post-MI HF). Myocardial fibrosis is a detrimental consequence of aberrant fibroblast activation and extracellular matrix depo...

ASS1 is a hub gene and possible therapeutic target for regulating metabolic dysfunction-associated steatotic liver disease modulated by a carbohydrate-restricted diet.

Molecular diversity
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the leading cause of chronic liver disease globally. A low-carbohydrate diet (LCD) offers benefits to MASLD patients, albeit its exact mechanism is not fully understood. Using public...

TRAPT: a multi-stage fused deep learning framework for predicting transcriptional regulators based on large-scale epigenomic data.

Nature communications
It is challenging to identify regulatory transcriptional regulators (TRs), which control gene expression via regulatory elements and epigenomic signals, in context-specific studies on the onset and progression of diseases. The use of large-scale mult...

Revealing the Oxidative Stress-Related Molecular Characteristics and Potential Therapeutic Targets of Schizophrenia through Integrated Gene Expression Data Analysis.

Molecular neurobiology
Schizophrenia is a severe mental disorder characterized by oxidative stress imbalances. The underlying mechanisms of oxidative stress-related gene expression in schizophrenia require further investigation. Additionally, the diagnosis of schizophrenia...

Investigation and validation of genes associated with endoplasmic reticulum stress in diabetic retinopathy using various machine learning algorithms.

Experimental eye research
BACKGROUND: Diabetic retinopathy (DR) is a common complication of diabetes, with Endoplasmic reticulum stress (ERS) playing a key role in cellular adaptation, injury, or apoptosis, impacting disease pathology. This study aimed to identify early diagn...

Machine learning analysis of gene expression profiles of pyroptosis-related differentially expressed genes in ischemic stroke revealed potential targets for drug repurposing.

Scientific reports
The relationship between ischemic stroke (IS) and pyroptosis centers on the inflammatory response elicited by cerebral tissue damage during an ischemic stroke event. However, an in-depth mechanistic understanding of their connection remains limited. ...

Galactose-Induced Cataracts in Rats: A Machine Learning Analysis.

International journal of medical sciences
Rat models are widely used to study cataracts due to their cost-effectiveness and prominent physiological and genetic similarities to humans The objective of this study was to identify genes involved in cataractogenesis due to galactose exposure in ...

A mechanism-informed deep neural network enables prioritization of regulators that drive cell state transitions.

Nature communications
Cells are regulated at multiple levels, from regulations of individual genes to interactions across multiple genes. Some recent neural network models can connect molecular changes to cellular phenotypes, but their design lacks modeling of regulatory ...

From Genes to Metabolites: HSP90B1's Role in Alzheimer's Disease and Potential for Therapeutic Intervention.

Neuromolecular medicine
Alzheimer's disease (AD) is a prototypical neurodegenerative disorder, predominantly affecting individuals in the presenile and elderly populations, with an etiology that remains elusive. This investigation aimed to elucidate the alterations in anoik...

Deciphering the cellular and molecular landscape of pulmonary fibrosis through single-cell sequencing and machine learning.

Journal of translational medicine
Pulmonary fibrosis is characterized by progressive lung scarring, leading to a decline in lung function and an increase in morbidity and mortality. This study leverages single-cell sequencing and machine learning to unravel the complex cellular and m...