AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Glioblastoma

Showing 11 to 20 of 194 articles

Clear Filters

Differentiation of glioblastoma G4 and two types of meningiomas using FTIR spectra and machine learning.

Analytical biochemistry
Brain tumors are among the most dangerous, due to their location in the organ that governs all life processes. Moreover, the high differentiation of these poses a challenge in diagnostics. Therefore, this study focused on the chemical differentiation...

Ensemble learning-based radiomics model for discriminating brain metastasis from glioblastoma.

European journal of radiology
OBJECTIVE: Differentiating between brain metastasis (BM) and glioblastoma (GBM) preoperatively is challenging due to their similar imaging features on conventional brain MRI. This study aimed to enhance diagnostic accuracy through a machine learning ...

The G Protein-Coupled Receptor-Related Gene Signatures for Diagnosis and Prognosis in Glioblastoma: A Deep Learning Model Using RNA-Seq Data.

Asian Pacific journal of cancer prevention : APJCP
BACKGROUND: Glioblastoma (GBM) is the most aggressive cancer in the central nervous system in glial cells. Finding novel biomarkers in GBM offers numerous advantages that can contribute to early detection, personalized treatment, improved patient out...

Survival prediction of glioblastoma patients using machine learning and deep learning: a systematic review.

BMC cancer
Glioblastoma Multiforme (GBM), classified as a grade IV glioma by the World Health Organization (WHO), is a prevalent and notably aggressive form of brain tumor derived from glial cells. It stands as one of the most severe forms of primary brain canc...

Radiomics and deep learning models for glioblastoma treatment outcome prediction based on tumor invasion modeling.

Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB)
PURPOSE: We investigate the feasibility of using a biophysically guided approach for delineating the Clinical Target Volume (CTV) in Glioblastoma Multiforme (GBM) by evaluating its impact on the treatment outcomes, specifically Overall Survival (OS) ...

Convolutional neural network-assisted Raman spectroscopy for high-precision diagnosis of glioblastoma.

Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
Glioblastoma multiforme (GBM) is the most lethal intracranial tumor with a median survival of approximately 15 months. Due to its highly invasive properties, it is particularly difficult to accurately identify the tumor margins intraoperatively. The ...

Radiogenomics and machine learning predict oncogenic signaling pathways in glioblastoma.

Journal of translational medicine
BACKGROUND: Glioblastoma (GBM) is a highly aggressive brain tumor associated with a poor patient prognosis. The survival rate remains low despite standard therapies, highlighting the urgent need for novel treatment strategies. Advanced imaging techni...

Deep learning classification of MGMT status of glioblastomas using multiparametric MRI with a novel domain knowledge augmented mask fusion approach.

Scientific reports
We aimed to build a robust classifier for the MGMT methylation status of glioblastoma in multiparametric MRI. We focused on multi-habitat deep image descriptors as our basic focus. A subset of the BRATS 2021 MGMT methylation dataset containing both M...

Brain tumour histopathology through the lens of deep learning: A systematic review.

Computers in biology and medicine
PROBLEM: Machine learning (ML)/Deep learning (DL) techniques have been evolving to solve more complex diseases, but it has been used relatively little in Glioblastoma (GBM) histopathological studies, which could benefit greatly due to the disease's c...

NNFit: A Self-Supervised Deep Learning Method for Accelerated Quantification of High-Resolution Short-Echo-Time MR Spectroscopy Datasets.

Radiology. Artificial intelligence
Purpose To develop and evaluate the performance of NNFit, a self-supervised deep learning method for quantification of high-resolution short-echo-time (TE) echo-planar spectroscopic imaging (EPSI) datasets, with the goal of addressing the computation...