Brain tumors are among the most dangerous, due to their location in the organ that governs all life processes. Moreover, the high differentiation of these poses a challenge in diagnostics. Therefore, this study focused on the chemical differentiation...
OBJECTIVE: Differentiating between brain metastasis (BM) and glioblastoma (GBM) preoperatively is challenging due to their similar imaging features on conventional brain MRI. This study aimed to enhance diagnostic accuracy through a machine learning ...
Asian Pacific journal of cancer prevention : APJCP
39733410
BACKGROUND: Glioblastoma (GBM) is the most aggressive cancer in the central nervous system in glial cells. Finding novel biomarkers in GBM offers numerous advantages that can contribute to early detection, personalized treatment, improved patient out...
Glioblastoma Multiforme (GBM), classified as a grade IV glioma by the World Health Organization (WHO), is a prevalent and notably aggressive form of brain tumor derived from glial cells. It stands as one of the most severe forms of primary brain canc...
Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB)
39724784
PURPOSE: We investigate the feasibility of using a biophysically guided approach for delineating the Clinical Target Volume (CTV) in Glioblastoma Multiforme (GBM) by evaluating its impact on the treatment outcomes, specifically Overall Survival (OS) ...
Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
39721487
Glioblastoma multiforme (GBM) is the most lethal intracranial tumor with a median survival of approximately 15 months. Due to its highly invasive properties, it is particularly difficult to accurately identify the tumor margins intraoperatively. The ...
BACKGROUND: Glioblastoma (GBM) is a highly aggressive brain tumor associated with a poor patient prognosis. The survival rate remains low despite standard therapies, highlighting the urgent need for novel treatment strategies. Advanced imaging techni...
We aimed to build a robust classifier for the MGMT methylation status of glioblastoma in multiparametric MRI. We focused on multi-habitat deep image descriptors as our basic focus. A subset of the BRATS 2021 MGMT methylation dataset containing both M...
PROBLEM: Machine learning (ML)/Deep learning (DL) techniques have been evolving to solve more complex diseases, but it has been used relatively little in Glioblastoma (GBM) histopathological studies, which could benefit greatly due to the disease's c...
Purpose To develop and evaluate the performance of NNFit, a self-supervised deep learning method for quantification of high-resolution short-echo-time (TE) echo-planar spectroscopic imaging (EPSI) datasets, with the goal of addressing the computation...