Cell death experiments are routinely done in many labs around the world, these experiments are the backbone of many assays for drug development. Cell death detection is usually performed in many ways, and requires time and reagents. However, cell dea...
BACKGROUND AND OBJECTIVE: Mutations in the gene cause frontotemporal dementia (FTD). Most previous studies investigating the neuroanatomical signature of mutations have grouped all different mutations together and shown an association with focal at...
BACKGROUND: The World Health Organization (WHO)-defined radiological pneumonia is a preferred endpoint in pneumococcal vaccine efficacy and effectiveness studies in children. Automating the WHO methodology may support more widespread application of t...
Brain tumor is not most common, but truculent type of cancer. Therefore, correct prediction of its aggressiveness nature at an early stage would influence the treatment strategy. Although several diagnostic methods based on different modalities exist...
Side experiments are performed on radiomics models to improve their reproducibility. We measure the impact of myocardial masks, radiomic side experiments and data augmentation for information transfer (DAFIT) approach to differentiate patients with a...
Background Obtaining ventricular volumetry and mass is key to most cardiac MRI but challenged by long multibreath-hold acquisitions. Purpose To assess the image quality and performance of a highly accelerated, free-breathing, two-dimensional cine car...
Regular screening for the early detection of common chronic diseases might benefit from the use of deep-learning approaches, particularly in resource-poor or remote settings. Here we show that deep-learning models can be used to identify chronic kidn...
There is little evidence on the applicability of deep learning (DL) in the segmentation of acute ischemic lesions on diffusion-weighted imaging (DWI) between magnetic resonance imaging (MRI) scanners of different manufacturers. We retrospectively inc...
Computational and mathematical methods in medicine
Jun 13, 2021
Deep convolutional networks have become a powerful tool for medical imaging diagnostic. In pathology, most efforts have been focused in the subfield of histology, while cytopathology (which studies diagnostic tools at the cellular level) remains unde...
Clinical workflows in oncology depend on predictive and prognostic biomarkers. However, the growing number of complex biomarkers contributes to costly and delayed decision-making in routine oncology care and treatment. As cancer is expected to rank a...